Soil permittivity response to bulk electrical conductivity for selected soil water sensors
Bulk electrical conductivity (σa) can dominate the low frequency dielectric loss spectrum in soils, causing changes in the permittivity and errors in estimated water content. We examined the dependence of measured apparent permittivity (Ka) on σa in contrasting soils using time-domain reflectometry...
Gespeichert in:
Veröffentlicht in: | Vadose zone journal 2013-05, Vol.12 (2), p.1-13 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | Vadose zone journal |
container_volume | 12 |
creator | Schwartz, R. C Casanova, J. J Pelletier, M. G Evett, S. R Baumhardt, R. L |
description | Bulk electrical conductivity (σa) can dominate the low frequency dielectric loss spectrum in soils, causing changes in the permittivity and errors in estimated water content. We examined the dependence of measured apparent permittivity (Ka) on σa in contrasting soils using time-domain reflectometry (TDR), a digital time-domain transmission (TDT) sensor, and a capacitance sensor (5TE) during near saturated solute displacement experiments. Sensors were installed in columns packed with fine sand or a clay loam soil. Displacement experiments were completed by first equilibrating columns with 0.25 dS m-1 CaCl2, introducing a step pulse of ∼4.7 dS m-1 CaCl2 and, after equilibration, displacing the resident solution with 0.25 dS m-1 CaCl2. Using TDR, measured Ka increased with increasing σa; however, the slope of this response averaged 3.47 m dS-1 for clay loam compared with 0.19 m dS-1 for sand. The large response in the clay loam was attributed to relaxation losses that narrowed the effective bandwidth from 821 to an estimated 164 MHz. In contrast, the effective frequency in sand averaged 515 MHz. Permittivity measured using the TDT probe exhibited little or no sensitivity to σa ( |
doi_str_mv | 10.2136/vzj2012.0133 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2136_vzj2012_0133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>VZJ2VZJ20120133</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4103-a312c95aa6ef2e9882d15d70ec058d1860bfac2d70af488c4d991b274d795a3c3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs7f0D2OjWPeWUpxScFFz4W3YQ0uSOp6WRIph3qr3fGzsKVcMMNJ985kIPQJSUzRnl-s_teM0LZjFDOj9CEZlwkNM_58Z_7KTqLcU0IFWnKJmj56q3DDYSNbVu7s-0eB4iNryPg1uPV1n1hcKDbYLVyWPvabPUIVj7g-PsIBschp1MtDFodfYjn6KRSLsLFuKfo_f7ubf6YLF4enua3i0SllPBEccq0yJTKoWIgypIZmpmCgCZZaWiZk1WlNOsVVaVlqVMjBF2xIjVF7-KaT9H1IVcHH2OASjbBblTYS0rk0Isce5FDLz0uDnhnHez_ZeXH8pkNpxdG79XB-wk-agu1hs4HZ-Tab0Pdf1IOnCQZ64f_AFsTeGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Soil permittivity response to bulk electrical conductivity for selected soil water sensors</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><creator>Schwartz, R. C ; Casanova, J. J ; Pelletier, M. G ; Evett, S. R ; Baumhardt, R. L</creator><creatorcontrib>Schwartz, R. C ; Casanova, J. J ; Pelletier, M. G ; Evett, S. R ; Baumhardt, R. L</creatorcontrib><description>Bulk electrical conductivity (σa) can dominate the low frequency dielectric loss spectrum in soils, causing changes in the permittivity and errors in estimated water content. We examined the dependence of measured apparent permittivity (Ka) on σa in contrasting soils using time-domain reflectometry (TDR), a digital time-domain transmission (TDT) sensor, and a capacitance sensor (5TE) during near saturated solute displacement experiments. Sensors were installed in columns packed with fine sand or a clay loam soil. Displacement experiments were completed by first equilibrating columns with 0.25 dS m-1 CaCl2, introducing a step pulse of ∼4.7 dS m-1 CaCl2 and, after equilibration, displacing the resident solution with 0.25 dS m-1 CaCl2. Using TDR, measured Ka increased with increasing σa; however, the slope of this response averaged 3.47 m dS-1 for clay loam compared with 0.19 m dS-1 for sand. The large response in the clay loam was attributed to relaxation losses that narrowed the effective bandwidth from 821 to an estimated 164 MHz. In contrast, the effective frequency in sand averaged 515 MHz. Permittivity measured using the TDT probe exhibited little or no sensitivity to σa (<0.32 m dS-1) in both media. Measured Ka using the 5TE probe declined with increasing σa up to 1 to 1.8 dS m-1 and then increased thereafter with net negative responses for sand (ΔKa/Δσa = -3.1 m dS-1) and net positive responses for the clay loam (ΔKa/Δσa = 2.9 m dS-1). Consideration of the Ka-σa response is required for accurate soil water content estimation (±0.03 m3 m-3) in the presence of solution EC variations using TDR in fine-textured soils or the 5TE sensor in all media. Large differences in the sampling volumes between 5TE-measured bulk EC and permittivity confounded the Ka-σa response in the presence of a concentration gradient.</description><identifier>ISSN: 1539-1663</identifier><identifier>EISSN: 1539-1663</identifier><identifier>DOI: 10.2136/vzj2012.0133</identifier><language>eng</language><publisher>Soil Science Society of America</publisher><subject>applied (geophysical surveys & methods) ; clastic sediments ; dielectric constant ; electrical conductivity ; electromagnetic methods ; geophysical methods ; Geophysics ; measurement ; Mollisols ; salinity ; sand ; sediments ; sensitivity analysis ; soils ; unsaturated zone ; water ; water content</subject><ispartof>Vadose zone journal, 2013-05, Vol.12 (2), p.1-13</ispartof><rights>GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, Copyright, Soil Science Society of America</rights><rights>Copyright © by the Soil Science Society of America, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4103-a312c95aa6ef2e9882d15d70ec058d1860bfac2d70af488c4d991b274d795a3c3</citedby><cites>FETCH-LOGICAL-a4103-a312c95aa6ef2e9882d15d70ec058d1860bfac2d70af488c4d991b274d795a3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2136%2Fvzj2012.0133$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2136%2Fvzj2012.0133$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Schwartz, R. C</creatorcontrib><creatorcontrib>Casanova, J. J</creatorcontrib><creatorcontrib>Pelletier, M. G</creatorcontrib><creatorcontrib>Evett, S. R</creatorcontrib><creatorcontrib>Baumhardt, R. L</creatorcontrib><title>Soil permittivity response to bulk electrical conductivity for selected soil water sensors</title><title>Vadose zone journal</title><description>Bulk electrical conductivity (σa) can dominate the low frequency dielectric loss spectrum in soils, causing changes in the permittivity and errors in estimated water content. We examined the dependence of measured apparent permittivity (Ka) on σa in contrasting soils using time-domain reflectometry (TDR), a digital time-domain transmission (TDT) sensor, and a capacitance sensor (5TE) during near saturated solute displacement experiments. Sensors were installed in columns packed with fine sand or a clay loam soil. Displacement experiments were completed by first equilibrating columns with 0.25 dS m-1 CaCl2, introducing a step pulse of ∼4.7 dS m-1 CaCl2 and, after equilibration, displacing the resident solution with 0.25 dS m-1 CaCl2. Using TDR, measured Ka increased with increasing σa; however, the slope of this response averaged 3.47 m dS-1 for clay loam compared with 0.19 m dS-1 for sand. The large response in the clay loam was attributed to relaxation losses that narrowed the effective bandwidth from 821 to an estimated 164 MHz. In contrast, the effective frequency in sand averaged 515 MHz. Permittivity measured using the TDT probe exhibited little or no sensitivity to σa (<0.32 m dS-1) in both media. Measured Ka using the 5TE probe declined with increasing σa up to 1 to 1.8 dS m-1 and then increased thereafter with net negative responses for sand (ΔKa/Δσa = -3.1 m dS-1) and net positive responses for the clay loam (ΔKa/Δσa = 2.9 m dS-1). Consideration of the Ka-σa response is required for accurate soil water content estimation (±0.03 m3 m-3) in the presence of solution EC variations using TDR in fine-textured soils or the 5TE sensor in all media. Large differences in the sampling volumes between 5TE-measured bulk EC and permittivity confounded the Ka-σa response in the presence of a concentration gradient.</description><subject>applied (geophysical surveys & methods)</subject><subject>clastic sediments</subject><subject>dielectric constant</subject><subject>electrical conductivity</subject><subject>electromagnetic methods</subject><subject>geophysical methods</subject><subject>Geophysics</subject><subject>measurement</subject><subject>Mollisols</subject><subject>salinity</subject><subject>sand</subject><subject>sediments</subject><subject>sensitivity analysis</subject><subject>soils</subject><subject>unsaturated zone</subject><subject>water</subject><subject>water content</subject><issn>1539-1663</issn><issn>1539-1663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs7f0D2OjWPeWUpxScFFz4W3YQ0uSOp6WRIph3qr3fGzsKVcMMNJ985kIPQJSUzRnl-s_teM0LZjFDOj9CEZlwkNM_58Z_7KTqLcU0IFWnKJmj56q3DDYSNbVu7s-0eB4iNryPg1uPV1n1hcKDbYLVyWPvabPUIVj7g-PsIBschp1MtDFodfYjn6KRSLsLFuKfo_f7ubf6YLF4enua3i0SllPBEccq0yJTKoWIgypIZmpmCgCZZaWiZk1WlNOsVVaVlqVMjBF2xIjVF7-KaT9H1IVcHH2OASjbBblTYS0rk0Isce5FDLz0uDnhnHez_ZeXH8pkNpxdG79XB-wk-agu1hs4HZ-Tab0Pdf1IOnCQZ64f_AFsTeGQ</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Schwartz, R. C</creator><creator>Casanova, J. J</creator><creator>Pelletier, M. G</creator><creator>Evett, S. R</creator><creator>Baumhardt, R. L</creator><general>Soil Science Society of America</general><general>The Soil Science Society of America, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201305</creationdate><title>Soil permittivity response to bulk electrical conductivity for selected soil water sensors</title><author>Schwartz, R. C ; Casanova, J. J ; Pelletier, M. G ; Evett, S. R ; Baumhardt, R. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4103-a312c95aa6ef2e9882d15d70ec058d1860bfac2d70af488c4d991b274d795a3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>applied (geophysical surveys & methods)</topic><topic>clastic sediments</topic><topic>dielectric constant</topic><topic>electrical conductivity</topic><topic>electromagnetic methods</topic><topic>geophysical methods</topic><topic>Geophysics</topic><topic>measurement</topic><topic>Mollisols</topic><topic>salinity</topic><topic>sand</topic><topic>sediments</topic><topic>sensitivity analysis</topic><topic>soils</topic><topic>unsaturated zone</topic><topic>water</topic><topic>water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwartz, R. C</creatorcontrib><creatorcontrib>Casanova, J. J</creatorcontrib><creatorcontrib>Pelletier, M. G</creatorcontrib><creatorcontrib>Evett, S. R</creatorcontrib><creatorcontrib>Baumhardt, R. L</creatorcontrib><collection>CrossRef</collection><jtitle>Vadose zone journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwartz, R. C</au><au>Casanova, J. J</au><au>Pelletier, M. G</au><au>Evett, S. R</au><au>Baumhardt, R. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soil permittivity response to bulk electrical conductivity for selected soil water sensors</atitle><jtitle>Vadose zone journal</jtitle><date>2013-05</date><risdate>2013</risdate><volume>12</volume><issue>2</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1539-1663</issn><eissn>1539-1663</eissn><abstract>Bulk electrical conductivity (σa) can dominate the low frequency dielectric loss spectrum in soils, causing changes in the permittivity and errors in estimated water content. We examined the dependence of measured apparent permittivity (Ka) on σa in contrasting soils using time-domain reflectometry (TDR), a digital time-domain transmission (TDT) sensor, and a capacitance sensor (5TE) during near saturated solute displacement experiments. Sensors were installed in columns packed with fine sand or a clay loam soil. Displacement experiments were completed by first equilibrating columns with 0.25 dS m-1 CaCl2, introducing a step pulse of ∼4.7 dS m-1 CaCl2 and, after equilibration, displacing the resident solution with 0.25 dS m-1 CaCl2. Using TDR, measured Ka increased with increasing σa; however, the slope of this response averaged 3.47 m dS-1 for clay loam compared with 0.19 m dS-1 for sand. The large response in the clay loam was attributed to relaxation losses that narrowed the effective bandwidth from 821 to an estimated 164 MHz. In contrast, the effective frequency in sand averaged 515 MHz. Permittivity measured using the TDT probe exhibited little or no sensitivity to σa (<0.32 m dS-1) in both media. Measured Ka using the 5TE probe declined with increasing σa up to 1 to 1.8 dS m-1 and then increased thereafter with net negative responses for sand (ΔKa/Δσa = -3.1 m dS-1) and net positive responses for the clay loam (ΔKa/Δσa = 2.9 m dS-1). Consideration of the Ka-σa response is required for accurate soil water content estimation (±0.03 m3 m-3) in the presence of solution EC variations using TDR in fine-textured soils or the 5TE sensor in all media. Large differences in the sampling volumes between 5TE-measured bulk EC and permittivity confounded the Ka-σa response in the presence of a concentration gradient.</abstract><pub>Soil Science Society of America</pub><doi>10.2136/vzj2012.0133</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-1663 |
ispartof | Vadose zone journal, 2013-05, Vol.12 (2), p.1-13 |
issn | 1539-1663 1539-1663 |
language | eng |
recordid | cdi_crossref_primary_10_2136_vzj2012_0133 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library |
subjects | applied (geophysical surveys & methods) clastic sediments dielectric constant electrical conductivity electromagnetic methods geophysical methods Geophysics measurement Mollisols salinity sand sediments sensitivity analysis soils unsaturated zone water water content |
title | Soil permittivity response to bulk electrical conductivity for selected soil water sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soil%20permittivity%20response%20to%20bulk%20electrical%20conductivity%20for%20selected%20soil%20water%20sensors&rft.jtitle=Vadose%20zone%20journal&rft.au=Schwartz,%20R.%20C&rft.date=2013-05&rft.volume=12&rft.issue=2&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1539-1663&rft.eissn=1539-1663&rft_id=info:doi/10.2136/vzj2012.0133&rft_dat=%3Cwiley_cross%3EVZJ2VZJ20120133%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |