Semianalytical solution for dual probe heat-pulse applications that accounts for probe radius and heat capacity

The dual-probe heat-pulse (DPHP) method is useful for measuring soil thermal properties. Measurements are made with a sensor that has two parallel cylindrical probes: one for introducing a pulse of heat into the soil (heater probe) and one for measuring change in temperature (temperature probe). We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vadose zone journal 2012-05, Vol.11 (2), p.vzj2011.0112-vzj2011.0112
Hauptverfasser: Knight, John H, Kluitenberg, Gerard J, Kamai, Tamir, Hopmans, Jan W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page vzj2011.0112
container_issue 2
container_start_page vzj2011.0112
container_title Vadose zone journal
container_volume 11
creator Knight, John H
Kluitenberg, Gerard J
Kamai, Tamir
Hopmans, Jan W
description The dual-probe heat-pulse (DPHP) method is useful for measuring soil thermal properties. Measurements are made with a sensor that has two parallel cylindrical probes: one for introducing a pulse of heat into the soil (heater probe) and one for measuring change in temperature (temperature probe). We present a semianalytical solution that accounts for the finite radius and finite heat capacity of the heater and temperature probes. A closed-form expression for the Laplace transform of the solution is obtained by considering the probes to be cylindrical perfect conductors. The Laplace-domain solution is inverted numerically. For the case where both probes have the same radius and heat capacity, we show that their finite properties have equal influence on the heat-pulse signal received by the temperature probe. The finite radius of the probes causes the heat-pulse signal to arrive earlier in time. This time shift increases in magnitude as the probe radius increases. The effect of the finite heat capacity of the probes depends on the ratio of the heat capacity of the probes (C0) and the heat capacity of the soil (C). Compared with the case where C0/C = 1, the magnitude of the heat-pulse signal decreases (i.e., smaller change in temperature) and the maximum temperature rise occurs later when C0/C > 1. When C0/C < 1, the magnitude of the signal increases and the maximum temperature rise occurs earlier. The semianalytical solution is appropriate for use in DPHP applications where the ratio of probe radius (a0) and probe spacing (L) satisfies the condition that a0/L ≤ 0.11.
doi_str_mv 10.2136/vzj2011.0112
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2136_vzj2011_0112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>VZJ2VZJ20110112</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3822-4c5fadd662d0cd968c5bd5763601ae6637319f970badb083f4d3df4830c897a03</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqWw8QO8Q4ofiZOMqOKpSgw8BhbrxnZoqjSO7IQq_HqcpgMTw9V96DtHugehS0oWjHJx8_2zYYTSRSh2hGY04XlEheDHf-ZTdOb9hhCaxzGbIftqthU0UA9dpaDG3tZ9V9kGl9Zh3YdL62xh8NpAF7V97Q2Gtq0DO1Ied2voMChl-6bze9HEO9BV7zE0ei_FClpQVTeco5MSgsvFoc_R-_3d2_IxWr08PC1vVxHwjLEoVkkJWgvBNFE6F5lKCp2kggtCwYQ3Uk7zMk9JAbogGS9jzXUZZ5yoLE-B8Dm6nnyVs947U8rWVVtwg6REjmHJQ1hyDCvg-YTvqtoM_7Ly4_OZjRWWg_Zq0n4Z61VlGmV21tVabmzvQrJeBpRJIjhLGf8Fjyh_bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Semianalytical solution for dual probe heat-pulse applications that accounts for probe radius and heat capacity</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Knight, John H ; Kluitenberg, Gerard J ; Kamai, Tamir ; Hopmans, Jan W</creator><creatorcontrib>Knight, John H ; Kluitenberg, Gerard J ; Kamai, Tamir ; Hopmans, Jan W</creatorcontrib><description>The dual-probe heat-pulse (DPHP) method is useful for measuring soil thermal properties. Measurements are made with a sensor that has two parallel cylindrical probes: one for introducing a pulse of heat into the soil (heater probe) and one for measuring change in temperature (temperature probe). We present a semianalytical solution that accounts for the finite radius and finite heat capacity of the heater and temperature probes. A closed-form expression for the Laplace transform of the solution is obtained by considering the probes to be cylindrical perfect conductors. The Laplace-domain solution is inverted numerically. For the case where both probes have the same radius and heat capacity, we show that their finite properties have equal influence on the heat-pulse signal received by the temperature probe. The finite radius of the probes causes the heat-pulse signal to arrive earlier in time. This time shift increases in magnitude as the probe radius increases. The effect of the finite heat capacity of the probes depends on the ratio of the heat capacity of the probes (C0) and the heat capacity of the soil (C). Compared with the case where C0/C = 1, the magnitude of the heat-pulse signal decreases (i.e., smaller change in temperature) and the maximum temperature rise occurs later when C0/C &gt; 1. When C0/C &lt; 1, the magnitude of the signal increases and the maximum temperature rise occurs earlier. The semianalytical solution is appropriate for use in DPHP applications where the ratio of probe radius (a0) and probe spacing (L) satisfies the condition that a0/L ≤ 0.11.</description><identifier>ISSN: 1539-1663</identifier><identifier>EISSN: 1539-1663</identifier><identifier>DOI: 10.2136/vzj2011.0112</identifier><language>eng</language><publisher>Soil Science Society of America</publisher><subject>heat capacity ; heat flow ; heating ; inverse problem ; Laplace transformations ; mathematical methods ; measurement ; numerical models ; soils ; temperature ; thermal conductivity ; thermal properties</subject><ispartof>Vadose zone journal, 2012-05, Vol.11 (2), p.vzj2011.0112-vzj2011.0112</ispartof><rights>GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, Copyright, Soil Science Society of America</rights><rights>Copyright © by the Soil Science Society of America, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3822-4c5fadd662d0cd968c5bd5763601ae6637319f970badb083f4d3df4830c897a03</citedby><cites>FETCH-LOGICAL-a3822-4c5fadd662d0cd968c5bd5763601ae6637319f970badb083f4d3df4830c897a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2136%2Fvzj2011.0112$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2136%2Fvzj2011.0112$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Knight, John H</creatorcontrib><creatorcontrib>Kluitenberg, Gerard J</creatorcontrib><creatorcontrib>Kamai, Tamir</creatorcontrib><creatorcontrib>Hopmans, Jan W</creatorcontrib><title>Semianalytical solution for dual probe heat-pulse applications that accounts for probe radius and heat capacity</title><title>Vadose zone journal</title><description>The dual-probe heat-pulse (DPHP) method is useful for measuring soil thermal properties. Measurements are made with a sensor that has two parallel cylindrical probes: one for introducing a pulse of heat into the soil (heater probe) and one for measuring change in temperature (temperature probe). We present a semianalytical solution that accounts for the finite radius and finite heat capacity of the heater and temperature probes. A closed-form expression for the Laplace transform of the solution is obtained by considering the probes to be cylindrical perfect conductors. The Laplace-domain solution is inverted numerically. For the case where both probes have the same radius and heat capacity, we show that their finite properties have equal influence on the heat-pulse signal received by the temperature probe. The finite radius of the probes causes the heat-pulse signal to arrive earlier in time. This time shift increases in magnitude as the probe radius increases. The effect of the finite heat capacity of the probes depends on the ratio of the heat capacity of the probes (C0) and the heat capacity of the soil (C). Compared with the case where C0/C = 1, the magnitude of the heat-pulse signal decreases (i.e., smaller change in temperature) and the maximum temperature rise occurs later when C0/C &gt; 1. When C0/C &lt; 1, the magnitude of the signal increases and the maximum temperature rise occurs earlier. The semianalytical solution is appropriate for use in DPHP applications where the ratio of probe radius (a0) and probe spacing (L) satisfies the condition that a0/L ≤ 0.11.</description><subject>heat capacity</subject><subject>heat flow</subject><subject>heating</subject><subject>inverse problem</subject><subject>Laplace transformations</subject><subject>mathematical methods</subject><subject>measurement</subject><subject>numerical models</subject><subject>soils</subject><subject>temperature</subject><subject>thermal conductivity</subject><subject>thermal properties</subject><issn>1539-1663</issn><issn>1539-1663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqWw8QO8Q4ofiZOMqOKpSgw8BhbrxnZoqjSO7IQq_HqcpgMTw9V96DtHugehS0oWjHJx8_2zYYTSRSh2hGY04XlEheDHf-ZTdOb9hhCaxzGbIftqthU0UA9dpaDG3tZ9V9kGl9Zh3YdL62xh8NpAF7V97Q2Gtq0DO1Ied2voMChl-6bze9HEO9BV7zE0ei_FClpQVTeco5MSgsvFoc_R-_3d2_IxWr08PC1vVxHwjLEoVkkJWgvBNFE6F5lKCp2kggtCwYQ3Uk7zMk9JAbogGS9jzXUZZ5yoLE-B8Dm6nnyVs947U8rWVVtwg6REjmHJQ1hyDCvg-YTvqtoM_7Ly4_OZjRWWg_Zq0n4Z61VlGmV21tVabmzvQrJeBpRJIjhLGf8Fjyh_bw</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Knight, John H</creator><creator>Kluitenberg, Gerard J</creator><creator>Kamai, Tamir</creator><creator>Hopmans, Jan W</creator><general>Soil Science Society of America</general><general>The Soil Science Society of America, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201205</creationdate><title>Semianalytical solution for dual probe heat-pulse applications that accounts for probe radius and heat capacity</title><author>Knight, John H ; Kluitenberg, Gerard J ; Kamai, Tamir ; Hopmans, Jan W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3822-4c5fadd662d0cd968c5bd5763601ae6637319f970badb083f4d3df4830c897a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>heat capacity</topic><topic>heat flow</topic><topic>heating</topic><topic>inverse problem</topic><topic>Laplace transformations</topic><topic>mathematical methods</topic><topic>measurement</topic><topic>numerical models</topic><topic>soils</topic><topic>temperature</topic><topic>thermal conductivity</topic><topic>thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knight, John H</creatorcontrib><creatorcontrib>Kluitenberg, Gerard J</creatorcontrib><creatorcontrib>Kamai, Tamir</creatorcontrib><creatorcontrib>Hopmans, Jan W</creatorcontrib><collection>CrossRef</collection><jtitle>Vadose zone journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knight, John H</au><au>Kluitenberg, Gerard J</au><au>Kamai, Tamir</au><au>Hopmans, Jan W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semianalytical solution for dual probe heat-pulse applications that accounts for probe radius and heat capacity</atitle><jtitle>Vadose zone journal</jtitle><date>2012-05</date><risdate>2012</risdate><volume>11</volume><issue>2</issue><spage>vzj2011.0112</spage><epage>vzj2011.0112</epage><pages>vzj2011.0112-vzj2011.0112</pages><issn>1539-1663</issn><eissn>1539-1663</eissn><abstract>The dual-probe heat-pulse (DPHP) method is useful for measuring soil thermal properties. Measurements are made with a sensor that has two parallel cylindrical probes: one for introducing a pulse of heat into the soil (heater probe) and one for measuring change in temperature (temperature probe). We present a semianalytical solution that accounts for the finite radius and finite heat capacity of the heater and temperature probes. A closed-form expression for the Laplace transform of the solution is obtained by considering the probes to be cylindrical perfect conductors. The Laplace-domain solution is inverted numerically. For the case where both probes have the same radius and heat capacity, we show that their finite properties have equal influence on the heat-pulse signal received by the temperature probe. The finite radius of the probes causes the heat-pulse signal to arrive earlier in time. This time shift increases in magnitude as the probe radius increases. The effect of the finite heat capacity of the probes depends on the ratio of the heat capacity of the probes (C0) and the heat capacity of the soil (C). Compared with the case where C0/C = 1, the magnitude of the heat-pulse signal decreases (i.e., smaller change in temperature) and the maximum temperature rise occurs later when C0/C &gt; 1. When C0/C &lt; 1, the magnitude of the signal increases and the maximum temperature rise occurs earlier. The semianalytical solution is appropriate for use in DPHP applications where the ratio of probe radius (a0) and probe spacing (L) satisfies the condition that a0/L ≤ 0.11.</abstract><pub>Soil Science Society of America</pub><doi>10.2136/vzj2011.0112</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-1663
ispartof Vadose zone journal, 2012-05, Vol.11 (2), p.vzj2011.0112-vzj2011.0112
issn 1539-1663
1539-1663
language eng
recordid cdi_crossref_primary_10_2136_vzj2011_0112
source Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals
subjects heat capacity
heat flow
heating
inverse problem
Laplace transformations
mathematical methods
measurement
numerical models
soils
temperature
thermal conductivity
thermal properties
title Semianalytical solution for dual probe heat-pulse applications that accounts for probe radius and heat capacity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A24%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semianalytical%20solution%20for%20dual%20probe%20heat-pulse%20applications%20that%20accounts%20for%20probe%20radius%20and%20heat%20capacity&rft.jtitle=Vadose%20zone%20journal&rft.au=Knight,%20John%20H&rft.date=2012-05&rft.volume=11&rft.issue=2&rft.spage=vzj2011.0112&rft.epage=vzj2011.0112&rft.pages=vzj2011.0112-vzj2011.0112&rft.issn=1539-1663&rft.eissn=1539-1663&rft_id=info:doi/10.2136/vzj2011.0112&rft_dat=%3Cwiley_cross%3EVZJ2VZJ20110112%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true