Unsaturated hydraulic conductivity measurements with centrifuges; a review

Conducting drainage or imbibition experiments in a centrifugal force field has long been recognized as a valid and efficient way to determine capillary pressure-saturation and relative permeability-saturation relationships. Experiments involving multiphase flow of immiscible fluids in porous media a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vadose zone journal 2009-08, Vol.8 (3), p.531-547
Hauptverfasser: van den Berg, E. H, Perfect, E, Tu, C, Knappett, P. S. K, Leao, T. P, Donat, R. W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 547
container_issue 3
container_start_page 531
container_title Vadose zone journal
container_volume 8
creator van den Berg, E. H
Perfect, E
Tu, C
Knappett, P. S. K
Leao, T. P
Donat, R. W
description Conducting drainage or imbibition experiments in a centrifugal force field has long been recognized as a valid and efficient way to determine capillary pressure-saturation and relative permeability-saturation relationships. Experiments involving multiphase flow of immiscible fluids in porous media are sped up because the centrifugal acceleration is many times greater than Earth's gravitational acceleration. In addition, the fact that centrifugal force is a body force and that experiments can be performed under well-controlled conditions are considered advantages over other techniques. During the past few decades, transient-flow centrifuge methods have been developed and applied in petroleum geosciences, while in the soil and environmental sciences the focus has been on steady-state centrifuge methods. To inform both groups of each others' work, the different instrumental approaches used are described. The theoretical background for modeling multiphase fluid flow of immiscible fluids through porous media in a centrifugal force field is then reviewed. This background forms the basis for understanding analytical and numerical formulations to interpret both steady-state and transient-flow centrifuge experiments. Research on the effects of compaction, menisci deformation, boundary conditions, corrections for early-time production data, the selection of measurable variables, and nonuniqueness of the data interpretation is discussed. A numerical example application of the transient-flow centrifuge method is presented. Finally, the major conclusions that can be drawn from the literature are discussed and potential areas for future research are identified.
doi_str_mv 10.2136/vzj2008.0119
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2136_vzj2008_0119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>VZJ2VZJ20080119</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3759-c05d01cf23e2c157b6cea2a187703d5187535535b9c5afd663b48aced68a30c23</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMKND_AdUvyIk1icUEWBqhIXyoGL5dqb1lWaIDtpFL4eV-2BE9KuZrSaWe0OQreUTBjl2cP-Z8sIKSaEUnmGRlRwmdAs4-d_-CW6CmFLCJVpykZovqyDbjuvW7B4M1ivu8oZbJradqZ1e9cOeAc6dB52ULcB967dYBOpd2W3hvCINfawd9Bfo4tSVwFuTjhGy9nzx_Q1Wby_vE2fFonmuZCJIcISakrGgRkq8lVmQDNNizwn3IqIgotYK2mELm08eZUW2oDNCs2JYXyM7o97jW9C8FCqb-922g-KEnXIQZ1yUIccolwe5b2rYPhXqz6_5uzQcXDy3h29a2iCcVAb6BtfWbVtOl_HJ1WUSkUkS7Oc_wKc-HJp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unsaturated hydraulic conductivity measurements with centrifuges; a review</title><source>Wiley Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>van den Berg, E. H ; Perfect, E ; Tu, C ; Knappett, P. S. K ; Leao, T. P ; Donat, R. W</creator><creatorcontrib>van den Berg, E. H ; Perfect, E ; Tu, C ; Knappett, P. S. K ; Leao, T. P ; Donat, R. W</creatorcontrib><description>Conducting drainage or imbibition experiments in a centrifugal force field has long been recognized as a valid and efficient way to determine capillary pressure-saturation and relative permeability-saturation relationships. Experiments involving multiphase flow of immiscible fluids in porous media are sped up because the centrifugal acceleration is many times greater than Earth's gravitational acceleration. In addition, the fact that centrifugal force is a body force and that experiments can be performed under well-controlled conditions are considered advantages over other techniques. During the past few decades, transient-flow centrifuge methods have been developed and applied in petroleum geosciences, while in the soil and environmental sciences the focus has been on steady-state centrifuge methods. To inform both groups of each others' work, the different instrumental approaches used are described. The theoretical background for modeling multiphase fluid flow of immiscible fluids through porous media in a centrifugal force field is then reviewed. This background forms the basis for understanding analytical and numerical formulations to interpret both steady-state and transient-flow centrifuge experiments. Research on the effects of compaction, menisci deformation, boundary conditions, corrections for early-time production data, the selection of measurable variables, and nonuniqueness of the data interpretation is discussed. A numerical example application of the transient-flow centrifuge method is presented. Finally, the major conclusions that can be drawn from the literature are discussed and potential areas for future research are identified.</description><identifier>ISSN: 1539-1663</identifier><identifier>EISSN: 1539-1663</identifier><identifier>DOI: 10.2136/vzj2008.0119</identifier><language>eng</language><publisher>Madison: Soil Science Society of America</publisher><subject>boundary conditions ; capillary pressure ; centrifuge methods ; hydraulic conductivity ; hydrogeology ; imbibition ; instruments ; measurement ; multiphase flow ; review ; steady flow ; unsaturated zone ; unsteady flow</subject><ispartof>Vadose zone journal, 2009-08, Vol.8 (3), p.531-547</ispartof><rights>GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, Copyright, Soil Science Society of America</rights><rights>Soil Science Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3759-c05d01cf23e2c157b6cea2a187703d5187535535b9c5afd663b48aced68a30c23</citedby><cites>FETCH-LOGICAL-a3759-c05d01cf23e2c157b6cea2a187703d5187535535b9c5afd663b48aced68a30c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2136%2Fvzj2008.0119$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2136%2Fvzj2008.0119$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>van den Berg, E. H</creatorcontrib><creatorcontrib>Perfect, E</creatorcontrib><creatorcontrib>Tu, C</creatorcontrib><creatorcontrib>Knappett, P. S. K</creatorcontrib><creatorcontrib>Leao, T. P</creatorcontrib><creatorcontrib>Donat, R. W</creatorcontrib><title>Unsaturated hydraulic conductivity measurements with centrifuges; a review</title><title>Vadose zone journal</title><description>Conducting drainage or imbibition experiments in a centrifugal force field has long been recognized as a valid and efficient way to determine capillary pressure-saturation and relative permeability-saturation relationships. Experiments involving multiphase flow of immiscible fluids in porous media are sped up because the centrifugal acceleration is many times greater than Earth's gravitational acceleration. In addition, the fact that centrifugal force is a body force and that experiments can be performed under well-controlled conditions are considered advantages over other techniques. During the past few decades, transient-flow centrifuge methods have been developed and applied in petroleum geosciences, while in the soil and environmental sciences the focus has been on steady-state centrifuge methods. To inform both groups of each others' work, the different instrumental approaches used are described. The theoretical background for modeling multiphase fluid flow of immiscible fluids through porous media in a centrifugal force field is then reviewed. This background forms the basis for understanding analytical and numerical formulations to interpret both steady-state and transient-flow centrifuge experiments. Research on the effects of compaction, menisci deformation, boundary conditions, corrections for early-time production data, the selection of measurable variables, and nonuniqueness of the data interpretation is discussed. A numerical example application of the transient-flow centrifuge method is presented. Finally, the major conclusions that can be drawn from the literature are discussed and potential areas for future research are identified.</description><subject>boundary conditions</subject><subject>capillary pressure</subject><subject>centrifuge methods</subject><subject>hydraulic conductivity</subject><subject>hydrogeology</subject><subject>imbibition</subject><subject>instruments</subject><subject>measurement</subject><subject>multiphase flow</subject><subject>review</subject><subject>steady flow</subject><subject>unsaturated zone</subject><subject>unsteady flow</subject><issn>1539-1663</issn><issn>1539-1663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMKND_AdUvyIk1icUEWBqhIXyoGL5dqb1lWaIDtpFL4eV-2BE9KuZrSaWe0OQreUTBjl2cP-Z8sIKSaEUnmGRlRwmdAs4-d_-CW6CmFLCJVpykZovqyDbjuvW7B4M1ivu8oZbJradqZ1e9cOeAc6dB52ULcB967dYBOpd2W3hvCINfawd9Bfo4tSVwFuTjhGy9nzx_Q1Wby_vE2fFonmuZCJIcISakrGgRkq8lVmQDNNizwn3IqIgotYK2mELm08eZUW2oDNCs2JYXyM7o97jW9C8FCqb-922g-KEnXIQZ1yUIccolwe5b2rYPhXqz6_5uzQcXDy3h29a2iCcVAb6BtfWbVtOl_HJ1WUSkUkS7Oc_wKc-HJp</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>van den Berg, E. H</creator><creator>Perfect, E</creator><creator>Tu, C</creator><creator>Knappett, P. S. K</creator><creator>Leao, T. P</creator><creator>Donat, R. W</creator><general>Soil Science Society of America</general><general>Soil Science Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200908</creationdate><title>Unsaturated hydraulic conductivity measurements with centrifuges; a review</title><author>van den Berg, E. H ; Perfect, E ; Tu, C ; Knappett, P. S. K ; Leao, T. P ; Donat, R. W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3759-c05d01cf23e2c157b6cea2a187703d5187535535b9c5afd663b48aced68a30c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>boundary conditions</topic><topic>capillary pressure</topic><topic>centrifuge methods</topic><topic>hydraulic conductivity</topic><topic>hydrogeology</topic><topic>imbibition</topic><topic>instruments</topic><topic>measurement</topic><topic>multiphase flow</topic><topic>review</topic><topic>steady flow</topic><topic>unsaturated zone</topic><topic>unsteady flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van den Berg, E. H</creatorcontrib><creatorcontrib>Perfect, E</creatorcontrib><creatorcontrib>Tu, C</creatorcontrib><creatorcontrib>Knappett, P. S. K</creatorcontrib><creatorcontrib>Leao, T. P</creatorcontrib><creatorcontrib>Donat, R. W</creatorcontrib><collection>CrossRef</collection><jtitle>Vadose zone journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van den Berg, E. H</au><au>Perfect, E</au><au>Tu, C</au><au>Knappett, P. S. K</au><au>Leao, T. P</au><au>Donat, R. W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsaturated hydraulic conductivity measurements with centrifuges; a review</atitle><jtitle>Vadose zone journal</jtitle><date>2009-08</date><risdate>2009</risdate><volume>8</volume><issue>3</issue><spage>531</spage><epage>547</epage><pages>531-547</pages><issn>1539-1663</issn><eissn>1539-1663</eissn><abstract>Conducting drainage or imbibition experiments in a centrifugal force field has long been recognized as a valid and efficient way to determine capillary pressure-saturation and relative permeability-saturation relationships. Experiments involving multiphase flow of immiscible fluids in porous media are sped up because the centrifugal acceleration is many times greater than Earth's gravitational acceleration. In addition, the fact that centrifugal force is a body force and that experiments can be performed under well-controlled conditions are considered advantages over other techniques. During the past few decades, transient-flow centrifuge methods have been developed and applied in petroleum geosciences, while in the soil and environmental sciences the focus has been on steady-state centrifuge methods. To inform both groups of each others' work, the different instrumental approaches used are described. The theoretical background for modeling multiphase fluid flow of immiscible fluids through porous media in a centrifugal force field is then reviewed. This background forms the basis for understanding analytical and numerical formulations to interpret both steady-state and transient-flow centrifuge experiments. Research on the effects of compaction, menisci deformation, boundary conditions, corrections for early-time production data, the selection of measurable variables, and nonuniqueness of the data interpretation is discussed. A numerical example application of the transient-flow centrifuge method is presented. Finally, the major conclusions that can be drawn from the literature are discussed and potential areas for future research are identified.</abstract><cop>Madison</cop><pub>Soil Science Society of America</pub><doi>10.2136/vzj2008.0119</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-1663
ispartof Vadose zone journal, 2009-08, Vol.8 (3), p.531-547
issn 1539-1663
1539-1663
language eng
recordid cdi_crossref_primary_10_2136_vzj2008_0119
source Wiley Journals; EZB-FREE-00999 freely available EZB journals
subjects boundary conditions
capillary pressure
centrifuge methods
hydraulic conductivity
hydrogeology
imbibition
instruments
measurement
multiphase flow
review
steady flow
unsaturated zone
unsteady flow
title Unsaturated hydraulic conductivity measurements with centrifuges; a review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A44%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsaturated%20hydraulic%20conductivity%20measurements%20with%20centrifuges;%20a%20review&rft.jtitle=Vadose%20zone%20journal&rft.au=van%20den%20Berg,%20E.%20H&rft.date=2009-08&rft.volume=8&rft.issue=3&rft.spage=531&rft.epage=547&rft.pages=531-547&rft.issn=1539-1663&rft.eissn=1539-1663&rft_id=info:doi/10.2136/vzj2008.0119&rft_dat=%3Cwiley_cross%3EVZJ2VZJ20080119%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true