Winter Hydrologic and Erosion Processes in the U.S. Palouse Region: Field Experimentation and WEPP Simulation
Soil erosion by water is detrimental to soil fertility, crop yield, and the environment. For cold areas, knowledge of winter hydrologic processes is critical to determining land-use and management practices for reducing soil loss and protecting land and water resources. Adequate understanding of win...
Gespeichert in:
Veröffentlicht in: | Vadose zone journal 2009-05, Vol.8 (2), p.426-436 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 436 |
---|---|
container_issue | 2 |
container_start_page | 426 |
container_title | Vadose zone journal |
container_volume | 8 |
creator | Singh, Prabhakar Wu, Joan Q McCool, Donald K Dun, Shuhui Lin, Chun-Hsu Morse, John R |
description | Soil erosion by water is detrimental to soil fertility, crop yield, and the environment. For cold areas, knowledge of winter hydrologic processes is critical to determining land-use and management practices for reducing soil loss and protecting land and water resources. Adequate understanding of winter processes is also essential to developing models as effective predictive tools. This study evaluated the effects of two contrasting tillage practices on winter hydrologic and erosion processes, and the suitability of the Water Erosion Prediction Project (WEPP) model with a newly implemented energy-budget-based winter routine for quantifying these processes. Research plots subject to two tillage treatments--continuous tilled bare fallow (CTBF) and no-till (NT) seeding of winter wheat (Triticum aestivum L. cv. Madsen) after spring barley (Hordeum vulgare L.)--were established at the USDA-ARS Palouse Conservation Field Station, Pullman, WA. The plots were monitored for runoff, erosion, soil temperature, water content, and depths of snow and freeze-thaw during October to May of 2003-2004 through 2006-2007. The NT plot generated negligible runoff and erosion (0.5 mm, 0.2 Mg ha-1) compared with CTBF (323 mm, 547 Mg ha-1). Frost occurred more frequently and was deeper in CTBF, probably due to its lack of residue and shallower snow depth. The modified WEPP model could reasonably reproduce major winter processes, yet it cannot represent all the complicated winter phenomena observed in the field. Continued efforts are needed to further improve the ability of WEPP to properly account for soil freeze-thaw and thus transient soil hydraulic properties and hydrologic and erosion processes. |
doi_str_mv | 10.2136/vzj2008.0061 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2136_vzj2008_0061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>VZJ2VZJ20080061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4061-27d76128acd03ef259d4011d3d3bf2180bed95262d19d4cb24708d8e93124e73</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMKNO_4AEvzIkxuqWgqqRERbKnGx3HhTXKUxslOgfD0O7YETh9WudmdGs4PQJSUhozy5-fheM0KykJCEHqEejXke0CThx3_mU3Tm3JoQmkcR66HNQjctWDzeKWtqs9Illo3CQ2ucNg0urCnBOXBYN7h9AzwPpyEuZG22DvAzrDzoFo801J7z9Q5Wb6BpZdtxO53FsCjwVG-29e_uHJ1UsnZwceh9NBsNZ4NxMHm6fxjcTYIy8tYDlqo0oSyTpSIcKhbnKiKUKq74smI0I0tQecwSpqi_lEsWpSRTGeScsghS3kfXe9nSv-EsVOLdG5N2JygRXVLikJTokvLwfA__1DXs_sWKl9dH1pVfHLhXe24ljZArq52YTxmhnNAk8hHH_AdFTnZW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Winter Hydrologic and Erosion Processes in the U.S. Palouse Region: Field Experimentation and WEPP Simulation</title><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Singh, Prabhakar ; Wu, Joan Q ; McCool, Donald K ; Dun, Shuhui ; Lin, Chun-Hsu ; Morse, John R</creator><creatorcontrib>Singh, Prabhakar ; Wu, Joan Q ; McCool, Donald K ; Dun, Shuhui ; Lin, Chun-Hsu ; Morse, John R</creatorcontrib><description>Soil erosion by water is detrimental to soil fertility, crop yield, and the environment. For cold areas, knowledge of winter hydrologic processes is critical to determining land-use and management practices for reducing soil loss and protecting land and water resources. Adequate understanding of winter processes is also essential to developing models as effective predictive tools. This study evaluated the effects of two contrasting tillage practices on winter hydrologic and erosion processes, and the suitability of the Water Erosion Prediction Project (WEPP) model with a newly implemented energy-budget-based winter routine for quantifying these processes. Research plots subject to two tillage treatments--continuous tilled bare fallow (CTBF) and no-till (NT) seeding of winter wheat (Triticum aestivum L. cv. Madsen) after spring barley (Hordeum vulgare L.)--were established at the USDA-ARS Palouse Conservation Field Station, Pullman, WA. The plots were monitored for runoff, erosion, soil temperature, water content, and depths of snow and freeze-thaw during October to May of 2003-2004 through 2006-2007. The NT plot generated negligible runoff and erosion (0.5 mm, 0.2 Mg ha-1) compared with CTBF (323 mm, 547 Mg ha-1). Frost occurred more frequently and was deeper in CTBF, probably due to its lack of residue and shallower snow depth. The modified WEPP model could reasonably reproduce major winter processes, yet it cannot represent all the complicated winter phenomena observed in the field. Continued efforts are needed to further improve the ability of WEPP to properly account for soil freeze-thaw and thus transient soil hydraulic properties and hydrologic and erosion processes.</description><identifier>ISSN: 1539-1663</identifier><identifier>EISSN: 1539-1663</identifier><identifier>DOI: 10.2136/vzj2008.0061</identifier><language>eng</language><publisher>Madison: Soil Science Society</publisher><subject>agricultural soils ; continuous cropping ; crop rotation ; frost ; Hordeum vulgare ; no-tillage ; runoff ; sediment yield ; snow ; soil temperature ; soil water content ; spring barley ; tillage ; Triticum aestivum ; water erosion ; Water Erosion Prediction Project ; winter ; winter wheat</subject><ispartof>Vadose zone journal, 2009-05, Vol.8 (2), p.426-436</ispartof><rights>Soil Science Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4061-27d76128acd03ef259d4011d3d3bf2180bed95262d19d4cb24708d8e93124e73</citedby><cites>FETCH-LOGICAL-c4061-27d76128acd03ef259d4011d3d3bf2180bed95262d19d4cb24708d8e93124e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2136%2Fvzj2008.0061$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2136%2Fvzj2008.0061$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Singh, Prabhakar</creatorcontrib><creatorcontrib>Wu, Joan Q</creatorcontrib><creatorcontrib>McCool, Donald K</creatorcontrib><creatorcontrib>Dun, Shuhui</creatorcontrib><creatorcontrib>Lin, Chun-Hsu</creatorcontrib><creatorcontrib>Morse, John R</creatorcontrib><title>Winter Hydrologic and Erosion Processes in the U.S. Palouse Region: Field Experimentation and WEPP Simulation</title><title>Vadose zone journal</title><description>Soil erosion by water is detrimental to soil fertility, crop yield, and the environment. For cold areas, knowledge of winter hydrologic processes is critical to determining land-use and management practices for reducing soil loss and protecting land and water resources. Adequate understanding of winter processes is also essential to developing models as effective predictive tools. This study evaluated the effects of two contrasting tillage practices on winter hydrologic and erosion processes, and the suitability of the Water Erosion Prediction Project (WEPP) model with a newly implemented energy-budget-based winter routine for quantifying these processes. Research plots subject to two tillage treatments--continuous tilled bare fallow (CTBF) and no-till (NT) seeding of winter wheat (Triticum aestivum L. cv. Madsen) after spring barley (Hordeum vulgare L.)--were established at the USDA-ARS Palouse Conservation Field Station, Pullman, WA. The plots were monitored for runoff, erosion, soil temperature, water content, and depths of snow and freeze-thaw during October to May of 2003-2004 through 2006-2007. The NT plot generated negligible runoff and erosion (0.5 mm, 0.2 Mg ha-1) compared with CTBF (323 mm, 547 Mg ha-1). Frost occurred more frequently and was deeper in CTBF, probably due to its lack of residue and shallower snow depth. The modified WEPP model could reasonably reproduce major winter processes, yet it cannot represent all the complicated winter phenomena observed in the field. Continued efforts are needed to further improve the ability of WEPP to properly account for soil freeze-thaw and thus transient soil hydraulic properties and hydrologic and erosion processes.</description><subject>agricultural soils</subject><subject>continuous cropping</subject><subject>crop rotation</subject><subject>frost</subject><subject>Hordeum vulgare</subject><subject>no-tillage</subject><subject>runoff</subject><subject>sediment yield</subject><subject>snow</subject><subject>soil temperature</subject><subject>soil water content</subject><subject>spring barley</subject><subject>tillage</subject><subject>Triticum aestivum</subject><subject>water erosion</subject><subject>Water Erosion Prediction Project</subject><subject>winter</subject><subject>winter wheat</subject><issn>1539-1663</issn><issn>1539-1663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMKNO_4AEvzIkxuqWgqqRERbKnGx3HhTXKUxslOgfD0O7YETh9WudmdGs4PQJSUhozy5-fheM0KykJCEHqEejXke0CThx3_mU3Tm3JoQmkcR66HNQjctWDzeKWtqs9Illo3CQ2ucNg0urCnBOXBYN7h9AzwPpyEuZG22DvAzrDzoFo801J7z9Q5Wb6BpZdtxO53FsCjwVG-29e_uHJ1UsnZwceh9NBsNZ4NxMHm6fxjcTYIy8tYDlqo0oSyTpSIcKhbnKiKUKq74smI0I0tQecwSpqi_lEsWpSRTGeScsghS3kfXe9nSv-EsVOLdG5N2JygRXVLikJTokvLwfA__1DXs_sWKl9dH1pVfHLhXe24ljZArq52YTxmhnNAk8hHH_AdFTnZW</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Singh, Prabhakar</creator><creator>Wu, Joan Q</creator><creator>McCool, Donald K</creator><creator>Dun, Shuhui</creator><creator>Lin, Chun-Hsu</creator><creator>Morse, John R</creator><general>Soil Science Society</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200905</creationdate><title>Winter Hydrologic and Erosion Processes in the U.S. Palouse Region: Field Experimentation and WEPP Simulation</title><author>Singh, Prabhakar ; Wu, Joan Q ; McCool, Donald K ; Dun, Shuhui ; Lin, Chun-Hsu ; Morse, John R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4061-27d76128acd03ef259d4011d3d3bf2180bed95262d19d4cb24708d8e93124e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>agricultural soils</topic><topic>continuous cropping</topic><topic>crop rotation</topic><topic>frost</topic><topic>Hordeum vulgare</topic><topic>no-tillage</topic><topic>runoff</topic><topic>sediment yield</topic><topic>snow</topic><topic>soil temperature</topic><topic>soil water content</topic><topic>spring barley</topic><topic>tillage</topic><topic>Triticum aestivum</topic><topic>water erosion</topic><topic>Water Erosion Prediction Project</topic><topic>winter</topic><topic>winter wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Prabhakar</creatorcontrib><creatorcontrib>Wu, Joan Q</creatorcontrib><creatorcontrib>McCool, Donald K</creatorcontrib><creatorcontrib>Dun, Shuhui</creatorcontrib><creatorcontrib>Lin, Chun-Hsu</creatorcontrib><creatorcontrib>Morse, John R</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><jtitle>Vadose zone journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Prabhakar</au><au>Wu, Joan Q</au><au>McCool, Donald K</au><au>Dun, Shuhui</au><au>Lin, Chun-Hsu</au><au>Morse, John R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Winter Hydrologic and Erosion Processes in the U.S. Palouse Region: Field Experimentation and WEPP Simulation</atitle><jtitle>Vadose zone journal</jtitle><date>2009-05</date><risdate>2009</risdate><volume>8</volume><issue>2</issue><spage>426</spage><epage>436</epage><pages>426-436</pages><issn>1539-1663</issn><eissn>1539-1663</eissn><abstract>Soil erosion by water is detrimental to soil fertility, crop yield, and the environment. For cold areas, knowledge of winter hydrologic processes is critical to determining land-use and management practices for reducing soil loss and protecting land and water resources. Adequate understanding of winter processes is also essential to developing models as effective predictive tools. This study evaluated the effects of two contrasting tillage practices on winter hydrologic and erosion processes, and the suitability of the Water Erosion Prediction Project (WEPP) model with a newly implemented energy-budget-based winter routine for quantifying these processes. Research plots subject to two tillage treatments--continuous tilled bare fallow (CTBF) and no-till (NT) seeding of winter wheat (Triticum aestivum L. cv. Madsen) after spring barley (Hordeum vulgare L.)--were established at the USDA-ARS Palouse Conservation Field Station, Pullman, WA. The plots were monitored for runoff, erosion, soil temperature, water content, and depths of snow and freeze-thaw during October to May of 2003-2004 through 2006-2007. The NT plot generated negligible runoff and erosion (0.5 mm, 0.2 Mg ha-1) compared with CTBF (323 mm, 547 Mg ha-1). Frost occurred more frequently and was deeper in CTBF, probably due to its lack of residue and shallower snow depth. The modified WEPP model could reasonably reproduce major winter processes, yet it cannot represent all the complicated winter phenomena observed in the field. Continued efforts are needed to further improve the ability of WEPP to properly account for soil freeze-thaw and thus transient soil hydraulic properties and hydrologic and erosion processes.</abstract><cop>Madison</cop><pub>Soil Science Society</pub><doi>10.2136/vzj2008.0061</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-1663 |
ispartof | Vadose zone journal, 2009-05, Vol.8 (2), p.426-436 |
issn | 1539-1663 1539-1663 |
language | eng |
recordid | cdi_crossref_primary_10_2136_vzj2008_0061 |
source | Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals |
subjects | agricultural soils continuous cropping crop rotation frost Hordeum vulgare no-tillage runoff sediment yield snow soil temperature soil water content spring barley tillage Triticum aestivum water erosion Water Erosion Prediction Project winter winter wheat |
title | Winter Hydrologic and Erosion Processes in the U.S. Palouse Region: Field Experimentation and WEPP Simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Winter%20Hydrologic%20and%20Erosion%20Processes%20in%20the%20U.S.%20Palouse%20Region:%20Field%20Experimentation%20and%20WEPP%20Simulation&rft.jtitle=Vadose%20zone%20journal&rft.au=Singh,%20Prabhakar&rft.date=2009-05&rft.volume=8&rft.issue=2&rft.spage=426&rft.epage=436&rft.pages=426-436&rft.issn=1539-1663&rft.eissn=1539-1663&rft_id=info:doi/10.2136/vzj2008.0061&rft_dat=%3Cwiley_cross%3EVZJ2VZJ20080061%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |