Conditional GAN-based Remote Sensing Target Image Generation Method

In view of the uncontrollable process of traditional GAN generating remote sensing target images, the shortcomings of generated samples are similar, and lack diversity. This paper proposes a generative confrontation network model based on background conditions. First, the computer vision attention m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Advanced Network, Monitoring, and Controls Monitoring, and Controls, 2020-12, Vol.5 (4), p.66-74
Hauptverfasser: Liu, Haoyang, Hu, Zhiyi, Yu, Jun, Gao, Shouyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 74
container_issue 4
container_start_page 66
container_title International Journal of Advanced Network, Monitoring, and Controls
container_volume 5
creator Liu, Haoyang
Hu, Zhiyi
Yu, Jun
Gao, Shouyi
description In view of the uncontrollable process of traditional GAN generating remote sensing target images, the shortcomings of generated samples are similar, and lack diversity. This paper proposes a generative confrontation network model based on background conditions. First, the computer vision attention mechanism is introduced into the generative confrontation network. Choose a learning target model so that the GAN network only learns the target model during training, and ignores other non-target information. Reduce the dependence on the number of samples in the GAN training process; secondly, use the U-net network as a generator to restore other non-target information when generating the remote sensing image of the target as much as possible; again, distinguish by different colors of the conditional mask The category of the generated target; at the same time, the L1 regularization loss is added to the loss term of the generator model, and finally, the remote sensing target image is generated. The experimental results show that the peak signal-to-noise ratio (PSNR) of the remote sensing image generation algorithm proposed in this paper reached 18.512, and the structural similarity (SSIM) reached 88.47%, which is better than the comparison test model where the generator is an ordinary autoencoder.
doi_str_mv 10.21307/ijanmc-2020-039
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_21307_ijanmc_2020_039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A657951327</galeid><sourcerecordid>A657951327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2506-cf961493c82bfd3ab12c72df5be35ca2d26fe6a3699914a58d5dcc0305eff4ad3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOHT3XvYPdOajSVvwZhSdg6mg8zqkyUnNaBNJOmT_3s554Y2ci_PywnPgPAjdELyghOHy1u2UH3ROMcU5ZvUZmtGixHmFWXX-J1-ieUo7jDElouaEzVDTBG_c6IJXfbZaPuetSmCyVxjCCNkb-OR8l21V7GDM1oPqIFuBh6iOSPYE40cw1-jCqj7B_HdfofeH-23zmG9eVutmuck15Vjk2taCFDXTFW2tYaolVJfUWN4C41pRQ4UFoZio65oUileGG60xwxysLZRhV2hxutupHqTzNoxR6WkMDE4HD9ZN_VLw8vgbLScAnwAdQ0oRrPyMblDxIAmWP-LkSZw8ipOTuAm5OyFfqh8hGuji_jAFuQv7ODlK_6K8EIJ9A1o1deQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Conditional GAN-based Remote Sensing Target Image Generation Method</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Haoyang ; Hu, Zhiyi ; Yu, Jun ; Gao, Shouyi</creator><creatorcontrib>Liu, Haoyang ; Hu, Zhiyi ; Yu, Jun ; Gao, Shouyi</creatorcontrib><description>In view of the uncontrollable process of traditional GAN generating remote sensing target images, the shortcomings of generated samples are similar, and lack diversity. This paper proposes a generative confrontation network model based on background conditions. First, the computer vision attention mechanism is introduced into the generative confrontation network. Choose a learning target model so that the GAN network only learns the target model during training, and ignores other non-target information. Reduce the dependence on the number of samples in the GAN training process; secondly, use the U-net network as a generator to restore other non-target information when generating the remote sensing image of the target as much as possible; again, distinguish by different colors of the conditional mask The category of the generated target; at the same time, the L1 regularization loss is added to the loss term of the generator model, and finally, the remote sensing target image is generated. The experimental results show that the peak signal-to-noise ratio (PSNR) of the remote sensing image generation algorithm proposed in this paper reached 18.512, and the structural similarity (SSIM) reached 88.47%, which is better than the comparison test model where the generator is an ordinary autoencoder.</description><identifier>ISSN: 2470-8038</identifier><identifier>EISSN: 2470-8038</identifier><identifier>DOI: 10.21307/ijanmc-2020-039</identifier><language>eng</language><publisher>Sciendo</publisher><subject>Conditional GAN ; Conditional Mask ; Liquors ; Machine vision ; Methods ; Remote sensing ; Remote Sensing Target Image ; U-net</subject><ispartof>International Journal of Advanced Network, Monitoring, and Controls, 2020-12, Vol.5 (4), p.66-74</ispartof><rights>COPYRIGHT 2020 Exeley Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2506-cf961493c82bfd3ab12c72df5be35ca2d26fe6a3699914a58d5dcc0305eff4ad3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Haoyang</creatorcontrib><creatorcontrib>Hu, Zhiyi</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><creatorcontrib>Gao, Shouyi</creatorcontrib><title>Conditional GAN-based Remote Sensing Target Image Generation Method</title><title>International Journal of Advanced Network, Monitoring, and Controls</title><description>In view of the uncontrollable process of traditional GAN generating remote sensing target images, the shortcomings of generated samples are similar, and lack diversity. This paper proposes a generative confrontation network model based on background conditions. First, the computer vision attention mechanism is introduced into the generative confrontation network. Choose a learning target model so that the GAN network only learns the target model during training, and ignores other non-target information. Reduce the dependence on the number of samples in the GAN training process; secondly, use the U-net network as a generator to restore other non-target information when generating the remote sensing image of the target as much as possible; again, distinguish by different colors of the conditional mask The category of the generated target; at the same time, the L1 regularization loss is added to the loss term of the generator model, and finally, the remote sensing target image is generated. The experimental results show that the peak signal-to-noise ratio (PSNR) of the remote sensing image generation algorithm proposed in this paper reached 18.512, and the structural similarity (SSIM) reached 88.47%, which is better than the comparison test model where the generator is an ordinary autoencoder.</description><subject>Conditional GAN</subject><subject>Conditional Mask</subject><subject>Liquors</subject><subject>Machine vision</subject><subject>Methods</subject><subject>Remote sensing</subject><subject>Remote Sensing Target Image</subject><subject>U-net</subject><issn>2470-8038</issn><issn>2470-8038</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMoOHT3XvYPdOajSVvwZhSdg6mg8zqkyUnNaBNJOmT_3s554Y2ci_PywnPgPAjdELyghOHy1u2UH3ROMcU5ZvUZmtGixHmFWXX-J1-ieUo7jDElouaEzVDTBG_c6IJXfbZaPuetSmCyVxjCCNkb-OR8l21V7GDM1oPqIFuBh6iOSPYE40cw1-jCqj7B_HdfofeH-23zmG9eVutmuck15Vjk2taCFDXTFW2tYaolVJfUWN4C41pRQ4UFoZio65oUileGG60xwxysLZRhV2hxutupHqTzNoxR6WkMDE4HD9ZN_VLw8vgbLScAnwAdQ0oRrPyMblDxIAmWP-LkSZw8ipOTuAm5OyFfqh8hGuji_jAFuQv7ODlK_6K8EIJ9A1o1deQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Liu, Haoyang</creator><creator>Hu, Zhiyi</creator><creator>Yu, Jun</creator><creator>Gao, Shouyi</creator><general>Sciendo</general><general>Exeley Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope></search><sort><creationdate>20201201</creationdate><title>Conditional GAN-based Remote Sensing Target Image Generation Method</title><author>Liu, Haoyang ; Hu, Zhiyi ; Yu, Jun ; Gao, Shouyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2506-cf961493c82bfd3ab12c72df5be35ca2d26fe6a3699914a58d5dcc0305eff4ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Conditional GAN</topic><topic>Conditional Mask</topic><topic>Liquors</topic><topic>Machine vision</topic><topic>Methods</topic><topic>Remote sensing</topic><topic>Remote Sensing Target Image</topic><topic>U-net</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haoyang</creatorcontrib><creatorcontrib>Hu, Zhiyi</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><creatorcontrib>Gao, Shouyi</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>International Journal of Advanced Network, Monitoring, and Controls</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Haoyang</au><au>Hu, Zhiyi</au><au>Yu, Jun</au><au>Gao, Shouyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditional GAN-based Remote Sensing Target Image Generation Method</atitle><jtitle>International Journal of Advanced Network, Monitoring, and Controls</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>5</volume><issue>4</issue><spage>66</spage><epage>74</epage><pages>66-74</pages><issn>2470-8038</issn><eissn>2470-8038</eissn><abstract>In view of the uncontrollable process of traditional GAN generating remote sensing target images, the shortcomings of generated samples are similar, and lack diversity. This paper proposes a generative confrontation network model based on background conditions. First, the computer vision attention mechanism is introduced into the generative confrontation network. Choose a learning target model so that the GAN network only learns the target model during training, and ignores other non-target information. Reduce the dependence on the number of samples in the GAN training process; secondly, use the U-net network as a generator to restore other non-target information when generating the remote sensing image of the target as much as possible; again, distinguish by different colors of the conditional mask The category of the generated target; at the same time, the L1 regularization loss is added to the loss term of the generator model, and finally, the remote sensing target image is generated. The experimental results show that the peak signal-to-noise ratio (PSNR) of the remote sensing image generation algorithm proposed in this paper reached 18.512, and the structural similarity (SSIM) reached 88.47%, which is better than the comparison test model where the generator is an ordinary autoencoder.</abstract><pub>Sciendo</pub><doi>10.21307/ijanmc-2020-039</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-8038
ispartof International Journal of Advanced Network, Monitoring, and Controls, 2020-12, Vol.5 (4), p.66-74
issn 2470-8038
2470-8038
language eng
recordid cdi_crossref_primary_10_21307_ijanmc_2020_039
source EZB-FREE-00999 freely available EZB journals
subjects Conditional GAN
Conditional Mask
Liquors
Machine vision
Methods
Remote sensing
Remote Sensing Target Image
U-net
title Conditional GAN-based Remote Sensing Target Image Generation Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditional%20GAN-based%20Remote%20Sensing%20Target%20Image%20Generation%20Method&rft.jtitle=International%20Journal%20of%20Advanced%20Network,%20Monitoring,%20and%20Controls&rft.au=Liu,%20Haoyang&rft.date=2020-12-01&rft.volume=5&rft.issue=4&rft.spage=66&rft.epage=74&rft.pages=66-74&rft.issn=2470-8038&rft.eissn=2470-8038&rft_id=info:doi/10.21307/ijanmc-2020-039&rft_dat=%3Cgale_cross%3EA657951327%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A657951327&rfr_iscdi=true