A DISCRETE LIMIT THEOREM FOR L-FUNCTIONS OF ELLIPTIC CURVES
In the paper, we prove the discrete limit theorem in the sense of the weak convergence of probability measures in the space of analytic on DV = {s ∈ C : 1 < σ < 3/2, |t| < V} functions for L-functions of elliptic curves LE(s). The main statement of the paper is as follows. Let h > 0 be a...
Gespeichert in:
Veröffentlicht in: | Jaunųjų Mokslininkų Darbai 2018-12, Vol.48 (2 (48)), p.27-29 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29 |
---|---|
container_issue | 2 (48) |
container_start_page | 27 |
container_title | Jaunųjų Mokslininkų Darbai |
container_volume | 48 |
creator | Garbaliauskienė, Virginija Garbaliauskas, Antanas |
description | In the paper, we prove the discrete limit theorem in the sense of the weak convergence of probability measures in the space of analytic on DV = {s ∈ C : 1 < σ < 3/2, |t| < V} functions for L-functions of elliptic curves LE(s). The main statement of the paper is as follows. Let h > 0 be a fixed real number such that exp {2πk/h} is an irrational number for all k∈Z\{0}. Then the probability measure μN(LE(s + imh)∈A), A ∈ B(H(DV)), converges weakly to the measure PLE as N→∞. |
doi_str_mv | 10.21277/jmd.v48i2.224 |
format | Article |
fullrecord | <record><control><sourceid>ceeol_cross</sourceid><recordid>TN_cdi_crossref_primary_10_21277_jmd_v48i2_224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ceeol_id>1023201</ceeol_id><doaj_id>oai_doaj_org_article_b390c75d85594064889fc304ac45e84e</doaj_id><sourcerecordid>1023201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1674-ae2763094244d7ed864535523a653efb1a8317e8a37f41d2f7c52becc8c8c7203</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhoMoWLRXb8L-gcT9mM1u8FRiYhfSRtLU67LZbCSlNZKo4L93aYvIHGYYZh54nyC4IziihArxsDu00TfInkaUwkUwIzHIUAoRX_6br4P5NPUNBhBAYyFmweMCPalNWmV1hgq1UjWql1lZZSuUlxUqwny7TmtVrjeozFFWFOqlVilKt9VrtrkNrjqzn9z83G-CbZ7V6TIsymeVLorQklhAaBwVMcMJUIBWuFbGwBnnlJmYM9c1xEhGhJOGiQ5ISzthOW2ctdKXoJjdBOrEbQez0x9jfzDjjx5Mr4-LYXzTZvzs7d7phiXYCt5KzhPAPrZMOsswGAvcSXCeFZ1YdhymaXTdH49gfTSpvUl9NKm9Sf9wf35wbtjr3fA1vvuw_pwyign7BQXSaW4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A DISCRETE LIMIT THEOREM FOR L-FUNCTIONS OF ELLIPTIC CURVES</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Garbaliauskienė, Virginija ; Garbaliauskas, Antanas</creator><creatorcontrib>Garbaliauskienė, Virginija ; Garbaliauskas, Antanas</creatorcontrib><description>In the paper, we prove the discrete limit theorem in the sense of the weak convergence of probability measures in the space of analytic on DV = {s ∈ C : 1 < σ < 3/2, |t| < V} functions for L-functions of elliptic curves LE(s). The main statement of the paper is as follows. Let h > 0 be a fixed real number such that exp {2πk/h} is an irrational number for all k∈Z\{0}. Then the probability measure μN(LE(s + imh)∈A), A ∈ B(H(DV)), converges weakly to the measure PLE as N→∞.</description><identifier>ISSN: 1648-8776</identifier><identifier>EISSN: 1648-8776</identifier><identifier>DOI: 10.21277/jmd.v48i2.224</identifier><language>eng</language><publisher>Vilniaus Universiteto Leidykla</publisher><subject>Education ; elliptic curve ; L-function ; limit theorem ; Methodology and research technology ; weak convergence</subject><ispartof>Jaunųjų Mokslininkų Darbai, 2018-12, Vol.48 (2 (48)), p.27-29</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.ceeol.com//api/image/getissuecoverimage?id=picture_2018_66274.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Garbaliauskienė, Virginija</creatorcontrib><creatorcontrib>Garbaliauskas, Antanas</creatorcontrib><title>A DISCRETE LIMIT THEOREM FOR L-FUNCTIONS OF ELLIPTIC CURVES</title><title>Jaunųjų Mokslininkų Darbai</title><addtitle>Journal of Young Scientists</addtitle><description>In the paper, we prove the discrete limit theorem in the sense of the weak convergence of probability measures in the space of analytic on DV = {s ∈ C : 1 < σ < 3/2, |t| < V} functions for L-functions of elliptic curves LE(s). The main statement of the paper is as follows. Let h > 0 be a fixed real number such that exp {2πk/h} is an irrational number for all k∈Z\{0}. Then the probability measure μN(LE(s + imh)∈A), A ∈ B(H(DV)), converges weakly to the measure PLE as N→∞.</description><subject>Education</subject><subject>elliptic curve</subject><subject>L-function</subject><subject>limit theorem</subject><subject>Methodology and research technology</subject><subject>weak convergence</subject><issn>1648-8776</issn><issn>1648-8776</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>REL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1Lw0AQhoMoWLRXb8L-gcT9mM1u8FRiYhfSRtLU67LZbCSlNZKo4L93aYvIHGYYZh54nyC4IziihArxsDu00TfInkaUwkUwIzHIUAoRX_6br4P5NPUNBhBAYyFmweMCPalNWmV1hgq1UjWql1lZZSuUlxUqwny7TmtVrjeozFFWFOqlVilKt9VrtrkNrjqzn9z83G-CbZ7V6TIsymeVLorQklhAaBwVMcMJUIBWuFbGwBnnlJmYM9c1xEhGhJOGiQ5ISzthOW2ctdKXoJjdBOrEbQez0x9jfzDjjx5Mr4-LYXzTZvzs7d7phiXYCt5KzhPAPrZMOsswGAvcSXCeFZ1YdhymaXTdH49gfTSpvUl9NKm9Sf9wf35wbtjr3fA1vvuw_pwyign7BQXSaW4</recordid><startdate>20181220</startdate><enddate>20181220</enddate><creator>Garbaliauskienė, Virginija</creator><creator>Garbaliauskas, Antanas</creator><general>Vilniaus Universiteto Leidykla</general><general>Vilnius University Press</general><scope>AE2</scope><scope>BIXPP</scope><scope>REL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20181220</creationdate><title>A DISCRETE LIMIT THEOREM FOR L-FUNCTIONS OF ELLIPTIC CURVES</title><author>Garbaliauskienė, Virginija ; Garbaliauskas, Antanas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1674-ae2763094244d7ed864535523a653efb1a8317e8a37f41d2f7c52becc8c8c7203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Education</topic><topic>elliptic curve</topic><topic>L-function</topic><topic>limit theorem</topic><topic>Methodology and research technology</topic><topic>weak convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garbaliauskienė, Virginija</creatorcontrib><creatorcontrib>Garbaliauskas, Antanas</creatorcontrib><collection>Central and Eastern European Online Library (C.E.E.O.L.) (DFG Nationallizenzen)</collection><collection>CEEOL: Open Access</collection><collection>Central and Eastern European Online Library</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Jaunųjų Mokslininkų Darbai</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garbaliauskienė, Virginija</au><au>Garbaliauskas, Antanas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A DISCRETE LIMIT THEOREM FOR L-FUNCTIONS OF ELLIPTIC CURVES</atitle><jtitle>Jaunųjų Mokslininkų Darbai</jtitle><addtitle>Journal of Young Scientists</addtitle><date>2018-12-20</date><risdate>2018</risdate><volume>48</volume><issue>2 (48)</issue><spage>27</spage><epage>29</epage><pages>27-29</pages><issn>1648-8776</issn><eissn>1648-8776</eissn><abstract>In the paper, we prove the discrete limit theorem in the sense of the weak convergence of probability measures in the space of analytic on DV = {s ∈ C : 1 < σ < 3/2, |t| < V} functions for L-functions of elliptic curves LE(s). The main statement of the paper is as follows. Let h > 0 be a fixed real number such that exp {2πk/h} is an irrational number for all k∈Z\{0}. Then the probability measure μN(LE(s + imh)∈A), A ∈ B(H(DV)), converges weakly to the measure PLE as N→∞.</abstract><pub>Vilniaus Universiteto Leidykla</pub><doi>10.21277/jmd.v48i2.224</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1648-8776 |
ispartof | Jaunųjų Mokslininkų Darbai, 2018-12, Vol.48 (2 (48)), p.27-29 |
issn | 1648-8776 1648-8776 |
language | eng |
recordid | cdi_crossref_primary_10_21277_jmd_v48i2_224 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Education elliptic curve L-function limit theorem Methodology and research technology weak convergence |
title | A DISCRETE LIMIT THEOREM FOR L-FUNCTIONS OF ELLIPTIC CURVES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A00%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ceeol_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20DISCRETE%20LIMIT%20THEOREM%20FOR%20L-FUNCTIONS%20OF%20ELLIPTIC%20CURVES&rft.jtitle=Jaun%C5%B3j%C5%B3%20Mokslinink%C5%B3%20Darbai&rft.au=Garbaliauskien%C4%97,%20Virginija&rft.date=2018-12-20&rft.volume=48&rft.issue=2%20(48)&rft.spage=27&rft.epage=29&rft.pages=27-29&rft.issn=1648-8776&rft.eissn=1648-8776&rft_id=info:doi/10.21277/jmd.v48i2.224&rft_dat=%3Cceeol_cross%3E1023201%3C/ceeol_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ceeol_id=1023201&rft_doaj_id=oai_doaj_org_article_b390c75d85594064889fc304ac45e84e&rfr_iscdi=true |