A DISCRETE LIMIT THEOREM FOR L-FUNCTIONS OF ELLIPTIC CURVES

In the paper, we prove the discrete limit theorem in the sense of the weak convergence of probability measures in the space of analytic on DV = {s ∈ C : 1 < σ < 3/2, |t| < V} functions for L-functions of elliptic curves LE(s). The main statement of the paper is as follows. Let h > 0 be a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Jaunųjų Mokslininkų Darbai 2018-12, Vol.48 (2 (48)), p.27-29
Hauptverfasser: Garbaliauskienė, Virginija, Garbaliauskas, Antanas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue 2 (48)
container_start_page 27
container_title Jaunųjų Mokslininkų Darbai
container_volume 48
creator Garbaliauskienė, Virginija
Garbaliauskas, Antanas
description In the paper, we prove the discrete limit theorem in the sense of the weak convergence of probability measures in the space of analytic on DV = {s ∈ C : 1 < σ < 3/2, |t| < V} functions for L-functions of elliptic curves LE(s). The main statement of the paper is as follows. Let h > 0 be a fixed real number such that exp {2πk/h} is an irrational number for all k∈Z\{0}. Then the probability measure μN(LE(s + imh)∈A), A ∈ B(H(DV)), converges weakly to the measure PLE as N→∞.
doi_str_mv 10.21277/jmd.v48i2.224
format Article
fullrecord <record><control><sourceid>ceeol_cross</sourceid><recordid>TN_cdi_crossref_primary_10_21277_jmd_v48i2_224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ceeol_id>1023201</ceeol_id><doaj_id>oai_doaj_org_article_b390c75d85594064889fc304ac45e84e</doaj_id><sourcerecordid>1023201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1674-ae2763094244d7ed864535523a653efb1a8317e8a37f41d2f7c52becc8c8c7203</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhoMoWLRXb8L-gcT9mM1u8FRiYhfSRtLU67LZbCSlNZKo4L93aYvIHGYYZh54nyC4IziihArxsDu00TfInkaUwkUwIzHIUAoRX_6br4P5NPUNBhBAYyFmweMCPalNWmV1hgq1UjWql1lZZSuUlxUqwny7TmtVrjeozFFWFOqlVilKt9VrtrkNrjqzn9z83G-CbZ7V6TIsymeVLorQklhAaBwVMcMJUIBWuFbGwBnnlJmYM9c1xEhGhJOGiQ5ISzthOW2ctdKXoJjdBOrEbQez0x9jfzDjjx5Mr4-LYXzTZvzs7d7phiXYCt5KzhPAPrZMOsswGAvcSXCeFZ1YdhymaXTdH49gfTSpvUl9NKm9Sf9wf35wbtjr3fA1vvuw_pwyign7BQXSaW4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A DISCRETE LIMIT THEOREM FOR L-FUNCTIONS OF ELLIPTIC CURVES</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Garbaliauskienė, Virginija ; Garbaliauskas, Antanas</creator><creatorcontrib>Garbaliauskienė, Virginija ; Garbaliauskas, Antanas</creatorcontrib><description>In the paper, we prove the discrete limit theorem in the sense of the weak convergence of probability measures in the space of analytic on DV = {s ∈ C : 1 &lt; σ &lt; 3/2, |t| &lt; V} functions for L-functions of elliptic curves LE(s). The main statement of the paper is as follows. Let h &gt; 0 be a fixed real number such that exp {2πk/h} is an irrational number for all k∈Z\{0}. Then the probability measure μN(LE(s + imh)∈A), A ∈ B(H(DV)), converges weakly to the measure PLE as N→∞.</description><identifier>ISSN: 1648-8776</identifier><identifier>EISSN: 1648-8776</identifier><identifier>DOI: 10.21277/jmd.v48i2.224</identifier><language>eng</language><publisher>Vilniaus Universiteto Leidykla</publisher><subject>Education ; elliptic curve ; L-function ; limit theorem ; Methodology and research technology ; weak convergence</subject><ispartof>Jaunųjų Mokslininkų Darbai, 2018-12, Vol.48 (2 (48)), p.27-29</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.ceeol.com//api/image/getissuecoverimage?id=picture_2018_66274.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Garbaliauskienė, Virginija</creatorcontrib><creatorcontrib>Garbaliauskas, Antanas</creatorcontrib><title>A DISCRETE LIMIT THEOREM FOR L-FUNCTIONS OF ELLIPTIC CURVES</title><title>Jaunųjų Mokslininkų Darbai</title><addtitle>Journal of Young Scientists</addtitle><description>In the paper, we prove the discrete limit theorem in the sense of the weak convergence of probability measures in the space of analytic on DV = {s ∈ C : 1 &lt; σ &lt; 3/2, |t| &lt; V} functions for L-functions of elliptic curves LE(s). The main statement of the paper is as follows. Let h &gt; 0 be a fixed real number such that exp {2πk/h} is an irrational number for all k∈Z\{0}. Then the probability measure μN(LE(s + imh)∈A), A ∈ B(H(DV)), converges weakly to the measure PLE as N→∞.</description><subject>Education</subject><subject>elliptic curve</subject><subject>L-function</subject><subject>limit theorem</subject><subject>Methodology and research technology</subject><subject>weak convergence</subject><issn>1648-8776</issn><issn>1648-8776</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>REL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1Lw0AQhoMoWLRXb8L-gcT9mM1u8FRiYhfSRtLU67LZbCSlNZKo4L93aYvIHGYYZh54nyC4IziihArxsDu00TfInkaUwkUwIzHIUAoRX_6br4P5NPUNBhBAYyFmweMCPalNWmV1hgq1UjWql1lZZSuUlxUqwny7TmtVrjeozFFWFOqlVilKt9VrtrkNrjqzn9z83G-CbZ7V6TIsymeVLorQklhAaBwVMcMJUIBWuFbGwBnnlJmYM9c1xEhGhJOGiQ5ISzthOW2ctdKXoJjdBOrEbQez0x9jfzDjjx5Mr4-LYXzTZvzs7d7phiXYCt5KzhPAPrZMOsswGAvcSXCeFZ1YdhymaXTdH49gfTSpvUl9NKm9Sf9wf35wbtjr3fA1vvuw_pwyign7BQXSaW4</recordid><startdate>20181220</startdate><enddate>20181220</enddate><creator>Garbaliauskienė, Virginija</creator><creator>Garbaliauskas, Antanas</creator><general>Vilniaus Universiteto Leidykla</general><general>Vilnius University Press</general><scope>AE2</scope><scope>BIXPP</scope><scope>REL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20181220</creationdate><title>A DISCRETE LIMIT THEOREM FOR L-FUNCTIONS OF ELLIPTIC CURVES</title><author>Garbaliauskienė, Virginija ; Garbaliauskas, Antanas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1674-ae2763094244d7ed864535523a653efb1a8317e8a37f41d2f7c52becc8c8c7203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Education</topic><topic>elliptic curve</topic><topic>L-function</topic><topic>limit theorem</topic><topic>Methodology and research technology</topic><topic>weak convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garbaliauskienė, Virginija</creatorcontrib><creatorcontrib>Garbaliauskas, Antanas</creatorcontrib><collection>Central and Eastern European Online Library (C.E.E.O.L.) (DFG Nationallizenzen)</collection><collection>CEEOL: Open Access</collection><collection>Central and Eastern European Online Library</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Jaunųjų Mokslininkų Darbai</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garbaliauskienė, Virginija</au><au>Garbaliauskas, Antanas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A DISCRETE LIMIT THEOREM FOR L-FUNCTIONS OF ELLIPTIC CURVES</atitle><jtitle>Jaunųjų Mokslininkų Darbai</jtitle><addtitle>Journal of Young Scientists</addtitle><date>2018-12-20</date><risdate>2018</risdate><volume>48</volume><issue>2 (48)</issue><spage>27</spage><epage>29</epage><pages>27-29</pages><issn>1648-8776</issn><eissn>1648-8776</eissn><abstract>In the paper, we prove the discrete limit theorem in the sense of the weak convergence of probability measures in the space of analytic on DV = {s ∈ C : 1 &lt; σ &lt; 3/2, |t| &lt; V} functions for L-functions of elliptic curves LE(s). The main statement of the paper is as follows. Let h &gt; 0 be a fixed real number such that exp {2πk/h} is an irrational number for all k∈Z\{0}. Then the probability measure μN(LE(s + imh)∈A), A ∈ B(H(DV)), converges weakly to the measure PLE as N→∞.</abstract><pub>Vilniaus Universiteto Leidykla</pub><doi>10.21277/jmd.v48i2.224</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1648-8776
ispartof Jaunųjų Mokslininkų Darbai, 2018-12, Vol.48 (2 (48)), p.27-29
issn 1648-8776
1648-8776
language eng
recordid cdi_crossref_primary_10_21277_jmd_v48i2_224
source EZB-FREE-00999 freely available EZB journals
subjects Education
elliptic curve
L-function
limit theorem
Methodology and research technology
weak convergence
title A DISCRETE LIMIT THEOREM FOR L-FUNCTIONS OF ELLIPTIC CURVES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A00%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ceeol_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20DISCRETE%20LIMIT%20THEOREM%20FOR%20L-FUNCTIONS%20OF%20ELLIPTIC%20CURVES&rft.jtitle=Jaun%C5%B3j%C5%B3%20Mokslinink%C5%B3%20Darbai&rft.au=Garbaliauskien%C4%97,%20Virginija&rft.date=2018-12-20&rft.volume=48&rft.issue=2%20(48)&rft.spage=27&rft.epage=29&rft.pages=27-29&rft.issn=1648-8776&rft.eissn=1648-8776&rft_id=info:doi/10.21277/jmd.v48i2.224&rft_dat=%3Cceeol_cross%3E1023201%3C/ceeol_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ceeol_id=1023201&rft_doaj_id=oai_doaj_org_article_b390c75d85594064889fc304ac45e84e&rfr_iscdi=true