ON FINITE-DIMENSIONAL MAPS
Let f: X → Y be a perfect surjective map of paracompact spaces. It is shown that if Y is a C-space (resp., dim Y ≤ n and dim f ≤ m), then the function space C(X, I∞) (resp., C(X, I2n+1+ m)) equipped with the source limitation topology contains a dense Gδ-set K such that f × g embeds X into Y × I∞(re...
Gespeichert in:
Veröffentlicht in: | Tsukuba journal of mathematics 2004-06, Vol.28 (1), p.155-167 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 167 |
---|---|
container_issue | 1 |
container_start_page | 155 |
container_title | Tsukuba journal of mathematics |
container_volume | 28 |
creator | Tuncali, H. Murat Valov, Vesko |
description | Let f: X → Y be a perfect surjective map of paracompact spaces. It is shown that if Y is a C-space (resp., dim Y ≤ n and dim f ≤ m), then the function space C(X, I∞) (resp., C(X, I2n+1+ m)) equipped with the source limitation topology contains a dense Gδ-set K such that f × g embeds X into Y × I∞(resp., into Y × I2n+1+m) for every g ∊ K. Some applications of this result are also given. |
doi_str_mv | 10.21099/tkbjm/1496164719 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_21099_tkbjm_1496164719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43686699</jstor_id><sourcerecordid>43686699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1559-7088770786dffee45bf93ea50ff05948edfd7734125d42ea1025b0208b6d8f093</originalsourceid><addsrcrecordid>eNpFz81KAzEYheEsFKzVC1AQegOxX_7zLYc6rYHpjNC6DjNNAo6WStKNd6-0oquzeg68hNwxeOQMEOfH92Hcz5lEzbQ0DC_IBIQ1VKLlV-S6lBFAIiJMyH3XzpaudduaPrl13W5c11bNbF29bG7IZeo_Srz93Sl5XdbbxTNtupVbVA3dMaWQGrDWGDBWh5RilGpIKGKvICVQKG0MKRgjJOMqSB57BlwNwMEOOtgEKKaEnX93-VBKjsl_5rd9n788A38K8qcg_x_0Yx7OZizHQ_4DUmirNaL4BtL1RtM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ON FINITE-DIMENSIONAL MAPS</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Open Access Titles of Japan</source><source>Alma/SFX Local Collection</source><creator>Tuncali, H. Murat ; Valov, Vesko</creator><creatorcontrib>Tuncali, H. Murat ; Valov, Vesko</creatorcontrib><description>Let f: X → Y be a perfect surjective map of paracompact spaces. It is shown that if Y is a C-space (resp., dim Y ≤ n and dim f ≤ m), then the function space C(X, I∞) (resp., C(X, I2n+1+ m)) equipped with the source limitation topology contains a dense Gδ-set K such that f × g embeds X into Y × I∞(resp., into Y × I2n+1+m) for every g ∊ K. Some applications of this result are also given.</description><identifier>ISSN: 0387-4982</identifier><identifier>DOI: 10.21099/tkbjm/1496164719</identifier><language>eng</language><publisher>Institute of Mathematics, University of Tsukuba</publisher><subject>Embeddings ; Function spaces ; Hurewicz theorem ; Mathematical theorems ; Metric spaces ; Topological dimensions ; Topological spaces ; Topological theorems ; Topology</subject><ispartof>Tsukuba journal of mathematics, 2004-06, Vol.28 (1), p.155-167</ispartof><rights>Copyright © 2003 Institute of Mathematics, University of Tsukuba</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1559-7088770786dffee45bf93ea50ff05948edfd7734125d42ea1025b0208b6d8f093</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43686699$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43686699$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Tuncali, H. Murat</creatorcontrib><creatorcontrib>Valov, Vesko</creatorcontrib><title>ON FINITE-DIMENSIONAL MAPS</title><title>Tsukuba journal of mathematics</title><description>Let f: X → Y be a perfect surjective map of paracompact spaces. It is shown that if Y is a C-space (resp., dim Y ≤ n and dim f ≤ m), then the function space C(X, I∞) (resp., C(X, I2n+1+ m)) equipped with the source limitation topology contains a dense Gδ-set K such that f × g embeds X into Y × I∞(resp., into Y × I2n+1+m) for every g ∊ K. Some applications of this result are also given.</description><subject>Embeddings</subject><subject>Function spaces</subject><subject>Hurewicz theorem</subject><subject>Mathematical theorems</subject><subject>Metric spaces</subject><subject>Topological dimensions</subject><subject>Topological spaces</subject><subject>Topological theorems</subject><subject>Topology</subject><issn>0387-4982</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFz81KAzEYheEsFKzVC1AQegOxX_7zLYc6rYHpjNC6DjNNAo6WStKNd6-0oquzeg68hNwxeOQMEOfH92Hcz5lEzbQ0DC_IBIQ1VKLlV-S6lBFAIiJMyH3XzpaudduaPrl13W5c11bNbF29bG7IZeo_Srz93Sl5XdbbxTNtupVbVA3dMaWQGrDWGDBWh5RilGpIKGKvICVQKG0MKRgjJOMqSB57BlwNwMEOOtgEKKaEnX93-VBKjsl_5rd9n788A38K8qcg_x_0Yx7OZizHQ_4DUmirNaL4BtL1RtM</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Tuncali, H. Murat</creator><creator>Valov, Vesko</creator><general>Institute of Mathematics, University of Tsukuba</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040601</creationdate><title>ON FINITE-DIMENSIONAL MAPS</title><author>Tuncali, H. Murat ; Valov, Vesko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1559-7088770786dffee45bf93ea50ff05948edfd7734125d42ea1025b0208b6d8f093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Embeddings</topic><topic>Function spaces</topic><topic>Hurewicz theorem</topic><topic>Mathematical theorems</topic><topic>Metric spaces</topic><topic>Topological dimensions</topic><topic>Topological spaces</topic><topic>Topological theorems</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Tuncali, H. Murat</creatorcontrib><creatorcontrib>Valov, Vesko</creatorcontrib><collection>CrossRef</collection><jtitle>Tsukuba journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuncali, H. Murat</au><au>Valov, Vesko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON FINITE-DIMENSIONAL MAPS</atitle><jtitle>Tsukuba journal of mathematics</jtitle><date>2004-06-01</date><risdate>2004</risdate><volume>28</volume><issue>1</issue><spage>155</spage><epage>167</epage><pages>155-167</pages><issn>0387-4982</issn><abstract>Let f: X → Y be a perfect surjective map of paracompact spaces. It is shown that if Y is a C-space (resp., dim Y ≤ n and dim f ≤ m), then the function space C(X, I∞) (resp., C(X, I2n+1+ m)) equipped with the source limitation topology contains a dense Gδ-set K such that f × g embeds X into Y × I∞(resp., into Y × I2n+1+m) for every g ∊ K. Some applications of this result are also given.</abstract><pub>Institute of Mathematics, University of Tsukuba</pub><doi>10.21099/tkbjm/1496164719</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0387-4982 |
ispartof | Tsukuba journal of mathematics, 2004-06, Vol.28 (1), p.155-167 |
issn | 0387-4982 |
language | eng |
recordid | cdi_crossref_primary_10_21099_tkbjm_1496164719 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Open Access Titles of Japan; Alma/SFX Local Collection |
subjects | Embeddings Function spaces Hurewicz theorem Mathematical theorems Metric spaces Topological dimensions Topological spaces Topological theorems Topology |
title | ON FINITE-DIMENSIONAL MAPS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20FINITE-DIMENSIONAL%20MAPS&rft.jtitle=Tsukuba%20journal%20of%20mathematics&rft.au=Tuncali,%20H.%20Murat&rft.date=2004-06-01&rft.volume=28&rft.issue=1&rft.spage=155&rft.epage=167&rft.pages=155-167&rft.issn=0387-4982&rft_id=info:doi/10.21099/tkbjm/1496164719&rft_dat=%3Cjstor_cross%3E43686699%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43686699&rfr_iscdi=true |