A CHARACTERIZATION OF THE TEMPERED DISTRIBUTIONS SUPPORTED BY A REGULAR CLOSED SET IN THE HEISENBERG GROUP

The aim of this paper is to give a characterization of the tempered distributions supported by a (Whitney's) regular closed set in the Euclidean space and the Heisenberg group by means of the heat kernel method. The heat kernel method, introduced by T. Matsuzawa, is the method to characterize t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tsukuba journal of mathematics 2015-07, Vol.39 (1), p.97-119
1. Verfasser: Oka, Yasuyuki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue 1
container_start_page 97
container_title Tsukuba journal of mathematics
container_volume 39
creator Oka, Yasuyuki
description The aim of this paper is to give a characterization of the tempered distributions supported by a (Whitney's) regular closed set in the Euclidean space and the Heisenberg group by means of the heat kernel method. The heat kernel method, introduced by T. Matsuzawa, is the method to characterize the generalized functions on the Euclidean space by the initial value of the solutions of the heat equation.
doi_str_mv 10.21099/tkbjm/1438951819
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_21099_tkbjm_1438951819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43686593</jstor_id><sourcerecordid>43686593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-29b32444cd7dc5e536942915b20b6c6d8edef149b1ccdcee40a2b26dd98712873</originalsourceid><addsrcrecordid>eNpVkM1Og0AYRSdGE2v1AdzNxiV2_oD5llM6BRIsZBgSdUPKQBPRpgbY-PbW1sS4usm9OXdxELqn5JFRArCY3pt-v6CCS_CppHCBZkww7klGny_RjHAZegIku0Y349gTIgCAzFCvcJQooyKrTfqqbJpvcL7GNtHY6qdCG73Cq7S0Jl1WP2OJy6oocmOP_fIFK2x0XGXK4CjLy2NXaovTzYlPdFrqzVKbGMcmr4pbdLXbfozd3W_OUbXWNkq8LI_TSGWeY8Amj0HDmRDCtWHr_M7nAQgG1G8YaQIXtLJrux0V0FDnWtd1gmxZw4K2BRlSJkM-R_T864bDOA7drv4c3vbb4aumpD7Jqk-y6j9ZR-bhzPTjdBj-AZyEteCBDHzg_BtOl2Fd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A CHARACTERIZATION OF THE TEMPERED DISTRIBUTIONS SUPPORTED BY A REGULAR CLOSED SET IN THE HEISENBERG GROUP</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Project Euclid Complete</source><creator>Oka, Yasuyuki</creator><creatorcontrib>Oka, Yasuyuki</creatorcontrib><description>The aim of this paper is to give a characterization of the tempered distributions supported by a (Whitney's) regular closed set in the Euclidean space and the Heisenberg group by means of the heat kernel method. The heat kernel method, introduced by T. Matsuzawa, is the method to characterize the generalized functions on the Euclidean space by the initial value of the solutions of the heat equation.</description><identifier>ISSN: 0387-4982</identifier><identifier>EISSN: 2423-821X</identifier><identifier>DOI: 10.21099/tkbjm/1438951819</identifier><language>eng</language><publisher>Institute of Mathematics, University of Tsukuba</publisher><ispartof>Tsukuba journal of mathematics, 2015-07, Vol.39 (1), p.97-119</ispartof><rights>Copyright © 2015 Institute of Mathematics, University of Tsukuba</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-29b32444cd7dc5e536942915b20b6c6d8edef149b1ccdcee40a2b26dd98712873</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43686593$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43686593$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Oka, Yasuyuki</creatorcontrib><title>A CHARACTERIZATION OF THE TEMPERED DISTRIBUTIONS SUPPORTED BY A REGULAR CLOSED SET IN THE HEISENBERG GROUP</title><title>Tsukuba journal of mathematics</title><description>The aim of this paper is to give a characterization of the tempered distributions supported by a (Whitney's) regular closed set in the Euclidean space and the Heisenberg group by means of the heat kernel method. The heat kernel method, introduced by T. Matsuzawa, is the method to characterize the generalized functions on the Euclidean space by the initial value of the solutions of the heat equation.</description><issn>0387-4982</issn><issn>2423-821X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpVkM1Og0AYRSdGE2v1AdzNxiV2_oD5llM6BRIsZBgSdUPKQBPRpgbY-PbW1sS4usm9OXdxELqn5JFRArCY3pt-v6CCS_CppHCBZkww7klGny_RjHAZegIku0Y349gTIgCAzFCvcJQooyKrTfqqbJpvcL7GNtHY6qdCG73Cq7S0Jl1WP2OJy6oocmOP_fIFK2x0XGXK4CjLy2NXaovTzYlPdFrqzVKbGMcmr4pbdLXbfozd3W_OUbXWNkq8LI_TSGWeY8Amj0HDmRDCtWHr_M7nAQgG1G8YaQIXtLJrux0V0FDnWtd1gmxZw4K2BRlSJkM-R_T864bDOA7drv4c3vbb4aumpD7Jqk-y6j9ZR-bhzPTjdBj-AZyEteCBDHzg_BtOl2Fd</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Oka, Yasuyuki</creator><general>Institute of Mathematics, University of Tsukuba</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150701</creationdate><title>A CHARACTERIZATION OF THE TEMPERED DISTRIBUTIONS SUPPORTED BY A REGULAR CLOSED SET IN THE HEISENBERG GROUP</title><author>Oka, Yasuyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-29b32444cd7dc5e536942915b20b6c6d8edef149b1ccdcee40a2b26dd98712873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Oka, Yasuyuki</creatorcontrib><collection>CrossRef</collection><jtitle>Tsukuba journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oka, Yasuyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A CHARACTERIZATION OF THE TEMPERED DISTRIBUTIONS SUPPORTED BY A REGULAR CLOSED SET IN THE HEISENBERG GROUP</atitle><jtitle>Tsukuba journal of mathematics</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>39</volume><issue>1</issue><spage>97</spage><epage>119</epage><pages>97-119</pages><issn>0387-4982</issn><eissn>2423-821X</eissn><abstract>The aim of this paper is to give a characterization of the tempered distributions supported by a (Whitney's) regular closed set in the Euclidean space and the Heisenberg group by means of the heat kernel method. The heat kernel method, introduced by T. Matsuzawa, is the method to characterize the generalized functions on the Euclidean space by the initial value of the solutions of the heat equation.</abstract><pub>Institute of Mathematics, University of Tsukuba</pub><doi>10.21099/tkbjm/1438951819</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0387-4982
ispartof Tsukuba journal of mathematics, 2015-07, Vol.39 (1), p.97-119
issn 0387-4982
2423-821X
language eng
recordid cdi_crossref_primary_10_21099_tkbjm_1438951819
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; Project Euclid Complete
title A CHARACTERIZATION OF THE TEMPERED DISTRIBUTIONS SUPPORTED BY A REGULAR CLOSED SET IN THE HEISENBERG GROUP
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A36%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20CHARACTERIZATION%20OF%20THE%20TEMPERED%20DISTRIBUTIONS%20SUPPORTED%20BY%20A%20REGULAR%20CLOSED%20SET%20IN%20THE%20HEISENBERG%20GROUP&rft.jtitle=Tsukuba%20journal%20of%20mathematics&rft.au=Oka,%20Yasuyuki&rft.date=2015-07-01&rft.volume=39&rft.issue=1&rft.spage=97&rft.epage=119&rft.pages=97-119&rft.issn=0387-4982&rft.eissn=2423-821X&rft_id=info:doi/10.21099/tkbjm/1438951819&rft_dat=%3Cjstor_cross%3E43686593%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43686593&rfr_iscdi=true