Classification of Prism Object Shapes Utilizing Tactile Spatiotemporal Differential Information Obtained from Grasping by Single-Finger Robot Hand with Soft Tactile Sensor Array

Our proposal involves classifying cylindrical objects by using soft tactile sensor arrays on a single five-link robotic finger. The front of each link is covered with semicircular silicone rubber with 235 small on-off switches. On-off data from switches obtained when an object is grasped is converte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of robotics and mechatronics 2007-02, Vol.19 (1), p.85-96
Hauptverfasser: Watanabe, Kenshi, Ohkubo, Kenichi, Ichikawa, Sumiaki, Hara, Fumio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 96
container_issue 1
container_start_page 85
container_title Journal of robotics and mechatronics
container_volume 19
creator Watanabe, Kenshi
Ohkubo, Kenichi
Ichikawa, Sumiaki
Hara, Fumio
description Our proposal involves classifying cylindrical objects by using soft tactile sensor arrays on a single five-link robotic finger. The front of each link is covered with semicircular silicone rubber with 235 small on-off switches. On-off data from switches obtained when an object is grasped is converted to a spatiotemporal matrix. Eight cells around the contact switch are useful in extracting local spatiotemporal contact physics, so the frequency of the 8-Cell patterns composed of binary data around the switch contacted is obtained for each object and used to form a contact-feature vector. This vector is obtained 10 times of experimental trial, corresponding to each object. Vectors are classified by the Mahalanobis distance for 12 objects - cylinders and regular polygonal prisms - resulting in 14 types of grasping (14 classes). Using 6 dimensional feature vectors, over 95% classification accuracy is obtained for 7 classes derived from 5 objects having one or two types of stable grasping.
doi_str_mv 10.20965/jrm.2007.p0085
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_20965_jrm_2007_p0085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_20965_jrm_2007_p0085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-9601218508c4651b4f785ce27fbeb234a9cc93eb7802e0bf2f198fe551a615283</originalsourceid><addsrcrecordid>eNpFkM1qAjEURkNpoWJdd5sXGE0yEydZiq0_IFiqrock3tTIzGRIAsW-Vd-wYy30bs53F_e7cBB6pmTMiJzyyTk0fSLluCNE8Ds0oELkmSCFvEcDIinPclmwRzSK8Uz64UUp83KAvue1itFZZ1RyvsXe4rfgYoO3-gwm4d1JdRDxIbnafbn2A--V6TPgXXc9SNB0PqgavzhrIUCbXL-sW-tDcyvc6qRcC0dsg2_wMqjYXWv0Be961pAtekDA7177hFeqPeJPl0545236fwZt9AHPQlCXJ_RgVR1h9MchOixe9_NVttku1_PZJjNMsJTJKaGMCk6EKaac6sKWghtgpdWgWV4oaYzMQZeCMCDaMkulsMA5VVPKmciHaHLrNcHHGMBWXXCNCpeKkupXetVLr67Sq1_p-Q_TuHlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Classification of Prism Object Shapes Utilizing Tactile Spatiotemporal Differential Information Obtained from Grasping by Single-Finger Robot Hand with Soft Tactile Sensor Array</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Open Access Titles of Japan</source><creator>Watanabe, Kenshi ; Ohkubo, Kenichi ; Ichikawa, Sumiaki ; Hara, Fumio</creator><creatorcontrib>Watanabe, Kenshi ; Ohkubo, Kenichi ; Ichikawa, Sumiaki ; Hara, Fumio ; Department of Mechanical Engineering Tokyo University of Science, 1-3 Kagurazaka, Shinjyuku-ku, Tokyo 162-8601, Japan ; Faculty of Systems Engineering, Tokyo University of Science, 5000-1 Toyohira, Chino-shi, Nagano 391-0292, Japan</creatorcontrib><description>Our proposal involves classifying cylindrical objects by using soft tactile sensor arrays on a single five-link robotic finger. The front of each link is covered with semicircular silicone rubber with 235 small on-off switches. On-off data from switches obtained when an object is grasped is converted to a spatiotemporal matrix. Eight cells around the contact switch are useful in extracting local spatiotemporal contact physics, so the frequency of the 8-Cell patterns composed of binary data around the switch contacted is obtained for each object and used to form a contact-feature vector. This vector is obtained 10 times of experimental trial, corresponding to each object. Vectors are classified by the Mahalanobis distance for 12 objects - cylinders and regular polygonal prisms - resulting in 14 types of grasping (14 classes). Using 6 dimensional feature vectors, over 95% classification accuracy is obtained for 7 classes derived from 5 objects having one or two types of stable grasping.</description><identifier>ISSN: 0915-3942</identifier><identifier>EISSN: 1883-8049</identifier><identifier>DOI: 10.20965/jrm.2007.p0085</identifier><language>eng</language><ispartof>Journal of robotics and mechatronics, 2007-02, Vol.19 (1), p.85-96</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-9601218508c4651b4f785ce27fbeb234a9cc93eb7802e0bf2f198fe551a615283</citedby><cites>FETCH-LOGICAL-c282t-9601218508c4651b4f785ce27fbeb234a9cc93eb7802e0bf2f198fe551a615283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Watanabe, Kenshi</creatorcontrib><creatorcontrib>Ohkubo, Kenichi</creatorcontrib><creatorcontrib>Ichikawa, Sumiaki</creatorcontrib><creatorcontrib>Hara, Fumio</creatorcontrib><creatorcontrib>Department of Mechanical Engineering Tokyo University of Science, 1-3 Kagurazaka, Shinjyuku-ku, Tokyo 162-8601, Japan</creatorcontrib><creatorcontrib>Faculty of Systems Engineering, Tokyo University of Science, 5000-1 Toyohira, Chino-shi, Nagano 391-0292, Japan</creatorcontrib><title>Classification of Prism Object Shapes Utilizing Tactile Spatiotemporal Differential Information Obtained from Grasping by Single-Finger Robot Hand with Soft Tactile Sensor Array</title><title>Journal of robotics and mechatronics</title><description>Our proposal involves classifying cylindrical objects by using soft tactile sensor arrays on a single five-link robotic finger. The front of each link is covered with semicircular silicone rubber with 235 small on-off switches. On-off data from switches obtained when an object is grasped is converted to a spatiotemporal matrix. Eight cells around the contact switch are useful in extracting local spatiotemporal contact physics, so the frequency of the 8-Cell patterns composed of binary data around the switch contacted is obtained for each object and used to form a contact-feature vector. This vector is obtained 10 times of experimental trial, corresponding to each object. Vectors are classified by the Mahalanobis distance for 12 objects - cylinders and regular polygonal prisms - resulting in 14 types of grasping (14 classes). Using 6 dimensional feature vectors, over 95% classification accuracy is obtained for 7 classes derived from 5 objects having one or two types of stable grasping.</description><issn>0915-3942</issn><issn>1883-8049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpFkM1qAjEURkNpoWJdd5sXGE0yEydZiq0_IFiqrock3tTIzGRIAsW-Vd-wYy30bs53F_e7cBB6pmTMiJzyyTk0fSLluCNE8Ds0oELkmSCFvEcDIinPclmwRzSK8Uz64UUp83KAvue1itFZZ1RyvsXe4rfgYoO3-gwm4d1JdRDxIbnafbn2A--V6TPgXXc9SNB0PqgavzhrIUCbXL-sW-tDcyvc6qRcC0dsg2_wMqjYXWv0Be961pAtekDA7177hFeqPeJPl0545236fwZt9AHPQlCXJ_RgVR1h9MchOixe9_NVttku1_PZJjNMsJTJKaGMCk6EKaac6sKWghtgpdWgWV4oaYzMQZeCMCDaMkulsMA5VVPKmciHaHLrNcHHGMBWXXCNCpeKkupXetVLr67Sq1_p-Q_TuHlw</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>Watanabe, Kenshi</creator><creator>Ohkubo, Kenichi</creator><creator>Ichikawa, Sumiaki</creator><creator>Hara, Fumio</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070201</creationdate><title>Classification of Prism Object Shapes Utilizing Tactile Spatiotemporal Differential Information Obtained from Grasping by Single-Finger Robot Hand with Soft Tactile Sensor Array</title><author>Watanabe, Kenshi ; Ohkubo, Kenichi ; Ichikawa, Sumiaki ; Hara, Fumio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-9601218508c4651b4f785ce27fbeb234a9cc93eb7802e0bf2f198fe551a615283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watanabe, Kenshi</creatorcontrib><creatorcontrib>Ohkubo, Kenichi</creatorcontrib><creatorcontrib>Ichikawa, Sumiaki</creatorcontrib><creatorcontrib>Hara, Fumio</creatorcontrib><creatorcontrib>Department of Mechanical Engineering Tokyo University of Science, 1-3 Kagurazaka, Shinjyuku-ku, Tokyo 162-8601, Japan</creatorcontrib><creatorcontrib>Faculty of Systems Engineering, Tokyo University of Science, 5000-1 Toyohira, Chino-shi, Nagano 391-0292, Japan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of robotics and mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watanabe, Kenshi</au><au>Ohkubo, Kenichi</au><au>Ichikawa, Sumiaki</au><au>Hara, Fumio</au><aucorp>Department of Mechanical Engineering Tokyo University of Science, 1-3 Kagurazaka, Shinjyuku-ku, Tokyo 162-8601, Japan</aucorp><aucorp>Faculty of Systems Engineering, Tokyo University of Science, 5000-1 Toyohira, Chino-shi, Nagano 391-0292, Japan</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Prism Object Shapes Utilizing Tactile Spatiotemporal Differential Information Obtained from Grasping by Single-Finger Robot Hand with Soft Tactile Sensor Array</atitle><jtitle>Journal of robotics and mechatronics</jtitle><date>2007-02-01</date><risdate>2007</risdate><volume>19</volume><issue>1</issue><spage>85</spage><epage>96</epage><pages>85-96</pages><issn>0915-3942</issn><eissn>1883-8049</eissn><abstract>Our proposal involves classifying cylindrical objects by using soft tactile sensor arrays on a single five-link robotic finger. The front of each link is covered with semicircular silicone rubber with 235 small on-off switches. On-off data from switches obtained when an object is grasped is converted to a spatiotemporal matrix. Eight cells around the contact switch are useful in extracting local spatiotemporal contact physics, so the frequency of the 8-Cell patterns composed of binary data around the switch contacted is obtained for each object and used to form a contact-feature vector. This vector is obtained 10 times of experimental trial, corresponding to each object. Vectors are classified by the Mahalanobis distance for 12 objects - cylinders and regular polygonal prisms - resulting in 14 types of grasping (14 classes). Using 6 dimensional feature vectors, over 95% classification accuracy is obtained for 7 classes derived from 5 objects having one or two types of stable grasping.</abstract><doi>10.20965/jrm.2007.p0085</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0915-3942
ispartof Journal of robotics and mechatronics, 2007-02, Vol.19 (1), p.85-96
issn 0915-3942
1883-8049
language eng
recordid cdi_crossref_primary_10_20965_jrm_2007_p0085
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Open Access Titles of Japan
title Classification of Prism Object Shapes Utilizing Tactile Spatiotemporal Differential Information Obtained from Grasping by Single-Finger Robot Hand with Soft Tactile Sensor Array
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A23%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Prism%20Object%20Shapes%20Utilizing%20Tactile%20Spatiotemporal%20Differential%20Information%20Obtained%20from%20Grasping%20by%20Single-Finger%20Robot%20Hand%20with%20Soft%20Tactile%20Sensor%20Array&rft.jtitle=Journal%20of%20robotics%20and%20mechatronics&rft.au=Watanabe,%20Kenshi&rft.aucorp=Department%20of%20Mechanical%20Engineering%20Tokyo%20University%20of%20Science,%201-3%20Kagurazaka,%20Shinjyuku-ku,%20Tokyo%20162-8601,%20Japan&rft.date=2007-02-01&rft.volume=19&rft.issue=1&rft.spage=85&rft.epage=96&rft.pages=85-96&rft.issn=0915-3942&rft.eissn=1883-8049&rft_id=info:doi/10.20965/jrm.2007.p0085&rft_dat=%3Ccrossref%3E10_20965_jrm_2007_p0085%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true