Generation of Bystander Robot Actions Based on Analysis of Relative Probability of Human Actions

This paper describes a method of rule extraction for generation of appropriate actions by a robot in a multiparty conversation based on the relative probability of human actions in a similar situation. The proposed method was applied to a dataset collected from multiparty interactions between two ro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced computational intelligence and intelligent informatics 2017-07, Vol.21 (4), p.686-696
Hauptverfasser: Sakai, Kazuki, Libera, Fabio Dalla, Yoshikawa, Yuichiro, Ishiguro, Hiroshi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes a method of rule extraction for generation of appropriate actions by a robot in a multiparty conversation based on the relative probability of human actions in a similar situation. The proposed method was applied to a dataset collected from multiparty interactions between two robots and one human subject who took on the role of supporting one robot. By computing the relative occurrence probabilities of human actions after the execution of the robots’ actions, twenty rules describing human behavior in such a role were identified. To evaluate the rules, the human role was filled by a new bystander robot and other subjects were asked to report their impressions of video clips in which the bystander robot acted or did not act in accordance with the rules. The reported impressions and a quantitative analysis of the rules suggest that the behavior of listening and the supporting role that the subjects play can be reproduced by a bystander robot acting in accordance with the rules identified by the proposed method.
ISSN:1343-0130
1883-8014
DOI:10.20965/jaciii.2017.p0686