Fuzzy c -Regression Models for Fuzzy Numbers on a Graph
With the assumption that the vertices have numerical values. The aim of this paper is to construct regression models to estimate the values from their relationship on the graph by defining the vertex and the numerical value as an independent variable and a dependent variable, respectively. Given the...
Gespeichert in:
Veröffentlicht in: | Journal of advanced computational intelligence and intelligent informatics 2016-07, Vol.20 (4), p.521-534 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 534 |
---|---|
container_issue | 4 |
container_start_page | 521 |
container_title | Journal of advanced computational intelligence and intelligent informatics |
container_volume | 20 |
creator | Higuchi, Tatsuya Miyamoto, Sadaaki Endo, Yasunori |
description | With the assumption that the vertices have numerical values. The aim of this paper is to construct regression models to estimate the values from their relationship on the graph by defining the vertex and the numerical value as an independent variable and a dependent variable, respectively. Given the condition that near vertices have close values, k-Nearest Neighbor regression models (KNN) has been proposed. However, the condition is not satisfied when some near vertices have different values. To overcome such difficulty, c-regression which classify data points int o some clusters has been proposed to improve performance of regression analysis. We moreover propose new c-regression models on a graph with fuzzy numbers on vertices and show some numerical examples. |
doi_str_mv | 10.20965/jaciii.2016.p0521 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_20965_jaciii_2016_p0521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_20965_jaciii_2016_p0521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-9631c024979c1552e5b30e0135ff3be992e9957b20c7d688e306beb5790060303</originalsourceid><addsrcrecordid>eNotj0FLAzEQhYMoWGr_gKf8gdRJZpPdHKXYKlQF0XNI0lnd0rpLYg_trzd2PTzmPR7M42PsVsJcgTX6butj13UlSDMfQCt5wSayaVA0IKvL4rFCARLhms1y3gIUrwxUcsLq5eF0OvLIxRt9Jsq567_5c7-hXeZtn_hYvxz2gVLmpfN8lfzwdcOuWr_LNPu_U_axfHhfPIr16-ppcb8WEa36EdagjKAqW9sotVakAwKVed22GMhaVaTroCDWG9M0hGACBV1bAAMIOGVq_BtTn3Oi1g2p2_t0dBLcmd6N9O6P3p3p8ReGW0yb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fuzzy c -Regression Models for Fuzzy Numbers on a Graph</title><source>DOAJ Directory of Open Access Journals</source><creator>Higuchi, Tatsuya ; Miyamoto, Sadaaki ; Endo, Yasunori</creator><creatorcontrib>Higuchi, Tatsuya ; Miyamoto, Sadaaki ; Endo, Yasunori ; University of Tsukuba</creatorcontrib><description>With the assumption that the vertices have numerical values. The aim of this paper is to construct regression models to estimate the values from their relationship on the graph by defining the vertex and the numerical value as an independent variable and a dependent variable, respectively. Given the condition that near vertices have close values, k-Nearest Neighbor regression models (KNN) has been proposed. However, the condition is not satisfied when some near vertices have different values. To overcome such difficulty, c-regression which classify data points int o some clusters has been proposed to improve performance of regression analysis. We moreover propose new c-regression models on a graph with fuzzy numbers on vertices and show some numerical examples.</description><identifier>ISSN: 1343-0130</identifier><identifier>EISSN: 1883-8014</identifier><identifier>DOI: 10.20965/jaciii.2016.p0521</identifier><language>eng</language><ispartof>Journal of advanced computational intelligence and intelligent informatics, 2016-07, Vol.20 (4), p.521-534</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c392t-9631c024979c1552e5b30e0135ff3be992e9957b20c7d688e306beb5790060303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Higuchi, Tatsuya</creatorcontrib><creatorcontrib>Miyamoto, Sadaaki</creatorcontrib><creatorcontrib>Endo, Yasunori</creatorcontrib><creatorcontrib>University of Tsukuba</creatorcontrib><title>Fuzzy c -Regression Models for Fuzzy Numbers on a Graph</title><title>Journal of advanced computational intelligence and intelligent informatics</title><description>With the assumption that the vertices have numerical values. The aim of this paper is to construct regression models to estimate the values from their relationship on the graph by defining the vertex and the numerical value as an independent variable and a dependent variable, respectively. Given the condition that near vertices have close values, k-Nearest Neighbor regression models (KNN) has been proposed. However, the condition is not satisfied when some near vertices have different values. To overcome such difficulty, c-regression which classify data points int o some clusters has been proposed to improve performance of regression analysis. We moreover propose new c-regression models on a graph with fuzzy numbers on vertices and show some numerical examples.</description><issn>1343-0130</issn><issn>1883-8014</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNotj0FLAzEQhYMoWGr_gKf8gdRJZpPdHKXYKlQF0XNI0lnd0rpLYg_trzd2PTzmPR7M42PsVsJcgTX6butj13UlSDMfQCt5wSayaVA0IKvL4rFCARLhms1y3gIUrwxUcsLq5eF0OvLIxRt9Jsq567_5c7-hXeZtn_hYvxz2gVLmpfN8lfzwdcOuWr_LNPu_U_axfHhfPIr16-ppcb8WEa36EdagjKAqW9sotVakAwKVed22GMhaVaTroCDWG9M0hGACBV1bAAMIOGVq_BtTn3Oi1g2p2_t0dBLcmd6N9O6P3p3p8ReGW0yb</recordid><startdate>20160720</startdate><enddate>20160720</enddate><creator>Higuchi, Tatsuya</creator><creator>Miyamoto, Sadaaki</creator><creator>Endo, Yasunori</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160720</creationdate><title>Fuzzy c -Regression Models for Fuzzy Numbers on a Graph</title><author>Higuchi, Tatsuya ; Miyamoto, Sadaaki ; Endo, Yasunori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-9631c024979c1552e5b30e0135ff3be992e9957b20c7d688e306beb5790060303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Higuchi, Tatsuya</creatorcontrib><creatorcontrib>Miyamoto, Sadaaki</creatorcontrib><creatorcontrib>Endo, Yasunori</creatorcontrib><creatorcontrib>University of Tsukuba</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Higuchi, Tatsuya</au><au>Miyamoto, Sadaaki</au><au>Endo, Yasunori</au><aucorp>University of Tsukuba</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy c -Regression Models for Fuzzy Numbers on a Graph</atitle><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle><date>2016-07-20</date><risdate>2016</risdate><volume>20</volume><issue>4</issue><spage>521</spage><epage>534</epage><pages>521-534</pages><issn>1343-0130</issn><eissn>1883-8014</eissn><abstract>With the assumption that the vertices have numerical values. The aim of this paper is to construct regression models to estimate the values from their relationship on the graph by defining the vertex and the numerical value as an independent variable and a dependent variable, respectively. Given the condition that near vertices have close values, k-Nearest Neighbor regression models (KNN) has been proposed. However, the condition is not satisfied when some near vertices have different values. To overcome such difficulty, c-regression which classify data points int o some clusters has been proposed to improve performance of regression analysis. We moreover propose new c-regression models on a graph with fuzzy numbers on vertices and show some numerical examples.</abstract><doi>10.20965/jaciii.2016.p0521</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1343-0130 |
ispartof | Journal of advanced computational intelligence and intelligent informatics, 2016-07, Vol.20 (4), p.521-534 |
issn | 1343-0130 1883-8014 |
language | eng |
recordid | cdi_crossref_primary_10_20965_jaciii_2016_p0521 |
source | DOAJ Directory of Open Access Journals |
title | Fuzzy c -Regression Models for Fuzzy Numbers on a Graph |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20c%20-Regression%20Models%20for%20Fuzzy%20Numbers%20on%20a%20Graph&rft.jtitle=Journal%20of%20advanced%20computational%20intelligence%20and%20intelligent%20informatics&rft.au=Higuchi,%20Tatsuya&rft.aucorp=University%20of%20Tsukuba&rft.date=2016-07-20&rft.volume=20&rft.issue=4&rft.spage=521&rft.epage=534&rft.pages=521-534&rft.issn=1343-0130&rft.eissn=1883-8014&rft_id=info:doi/10.20965/jaciii.2016.p0521&rft_dat=%3Ccrossref%3E10_20965_jaciii_2016_p0521%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |