Fuzzy c -Regression Models for Fuzzy Numbers on a Graph

With the assumption that the vertices have numerical values. The aim of this paper is to construct regression models to estimate the values from their relationship on the graph by defining the vertex and the numerical value as an independent variable and a dependent variable, respectively. Given the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced computational intelligence and intelligent informatics 2016-07, Vol.20 (4), p.521-534
Hauptverfasser: Higuchi, Tatsuya, Miyamoto, Sadaaki, Endo, Yasunori
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 534
container_issue 4
container_start_page 521
container_title Journal of advanced computational intelligence and intelligent informatics
container_volume 20
creator Higuchi, Tatsuya
Miyamoto, Sadaaki
Endo, Yasunori
description With the assumption that the vertices have numerical values. The aim of this paper is to construct regression models to estimate the values from their relationship on the graph by defining the vertex and the numerical value as an independent variable and a dependent variable, respectively. Given the condition that near vertices have close values, k-Nearest Neighbor regression models (KNN) has been proposed. However, the condition is not satisfied when some near vertices have different values. To overcome such difficulty, c-regression which classify data points int o some clusters has been proposed to improve performance of regression analysis. We moreover propose new c-regression models on a graph with fuzzy numbers on vertices and show some numerical examples.
doi_str_mv 10.20965/jaciii.2016.p0521
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_20965_jaciii_2016_p0521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_20965_jaciii_2016_p0521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-9631c024979c1552e5b30e0135ff3be992e9957b20c7d688e306beb5790060303</originalsourceid><addsrcrecordid>eNotj0FLAzEQhYMoWGr_gKf8gdRJZpPdHKXYKlQF0XNI0lnd0rpLYg_trzd2PTzmPR7M42PsVsJcgTX6butj13UlSDMfQCt5wSayaVA0IKvL4rFCARLhms1y3gIUrwxUcsLq5eF0OvLIxRt9Jsq567_5c7-hXeZtn_hYvxz2gVLmpfN8lfzwdcOuWr_LNPu_U_axfHhfPIr16-ppcb8WEa36EdagjKAqW9sotVakAwKVed22GMhaVaTroCDWG9M0hGACBV1bAAMIOGVq_BtTn3Oi1g2p2_t0dBLcmd6N9O6P3p3p8ReGW0yb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fuzzy c -Regression Models for Fuzzy Numbers on a Graph</title><source>DOAJ Directory of Open Access Journals</source><creator>Higuchi, Tatsuya ; Miyamoto, Sadaaki ; Endo, Yasunori</creator><creatorcontrib>Higuchi, Tatsuya ; Miyamoto, Sadaaki ; Endo, Yasunori ; University of Tsukuba</creatorcontrib><description>With the assumption that the vertices have numerical values. The aim of this paper is to construct regression models to estimate the values from their relationship on the graph by defining the vertex and the numerical value as an independent variable and a dependent variable, respectively. Given the condition that near vertices have close values, k-Nearest Neighbor regression models (KNN) has been proposed. However, the condition is not satisfied when some near vertices have different values. To overcome such difficulty, c-regression which classify data points int o some clusters has been proposed to improve performance of regression analysis. We moreover propose new c-regression models on a graph with fuzzy numbers on vertices and show some numerical examples.</description><identifier>ISSN: 1343-0130</identifier><identifier>EISSN: 1883-8014</identifier><identifier>DOI: 10.20965/jaciii.2016.p0521</identifier><language>eng</language><ispartof>Journal of advanced computational intelligence and intelligent informatics, 2016-07, Vol.20 (4), p.521-534</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c392t-9631c024979c1552e5b30e0135ff3be992e9957b20c7d688e306beb5790060303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Higuchi, Tatsuya</creatorcontrib><creatorcontrib>Miyamoto, Sadaaki</creatorcontrib><creatorcontrib>Endo, Yasunori</creatorcontrib><creatorcontrib>University of Tsukuba</creatorcontrib><title>Fuzzy c -Regression Models for Fuzzy Numbers on a Graph</title><title>Journal of advanced computational intelligence and intelligent informatics</title><description>With the assumption that the vertices have numerical values. The aim of this paper is to construct regression models to estimate the values from their relationship on the graph by defining the vertex and the numerical value as an independent variable and a dependent variable, respectively. Given the condition that near vertices have close values, k-Nearest Neighbor regression models (KNN) has been proposed. However, the condition is not satisfied when some near vertices have different values. To overcome such difficulty, c-regression which classify data points int o some clusters has been proposed to improve performance of regression analysis. We moreover propose new c-regression models on a graph with fuzzy numbers on vertices and show some numerical examples.</description><issn>1343-0130</issn><issn>1883-8014</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNotj0FLAzEQhYMoWGr_gKf8gdRJZpPdHKXYKlQF0XNI0lnd0rpLYg_trzd2PTzmPR7M42PsVsJcgTX6butj13UlSDMfQCt5wSayaVA0IKvL4rFCARLhms1y3gIUrwxUcsLq5eF0OvLIxRt9Jsq567_5c7-hXeZtn_hYvxz2gVLmpfN8lfzwdcOuWr_LNPu_U_axfHhfPIr16-ppcb8WEa36EdagjKAqW9sotVakAwKVed22GMhaVaTroCDWG9M0hGACBV1bAAMIOGVq_BtTn3Oi1g2p2_t0dBLcmd6N9O6P3p3p8ReGW0yb</recordid><startdate>20160720</startdate><enddate>20160720</enddate><creator>Higuchi, Tatsuya</creator><creator>Miyamoto, Sadaaki</creator><creator>Endo, Yasunori</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160720</creationdate><title>Fuzzy c -Regression Models for Fuzzy Numbers on a Graph</title><author>Higuchi, Tatsuya ; Miyamoto, Sadaaki ; Endo, Yasunori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-9631c024979c1552e5b30e0135ff3be992e9957b20c7d688e306beb5790060303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Higuchi, Tatsuya</creatorcontrib><creatorcontrib>Miyamoto, Sadaaki</creatorcontrib><creatorcontrib>Endo, Yasunori</creatorcontrib><creatorcontrib>University of Tsukuba</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Higuchi, Tatsuya</au><au>Miyamoto, Sadaaki</au><au>Endo, Yasunori</au><aucorp>University of Tsukuba</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy c -Regression Models for Fuzzy Numbers on a Graph</atitle><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle><date>2016-07-20</date><risdate>2016</risdate><volume>20</volume><issue>4</issue><spage>521</spage><epage>534</epage><pages>521-534</pages><issn>1343-0130</issn><eissn>1883-8014</eissn><abstract>With the assumption that the vertices have numerical values. The aim of this paper is to construct regression models to estimate the values from their relationship on the graph by defining the vertex and the numerical value as an independent variable and a dependent variable, respectively. Given the condition that near vertices have close values, k-Nearest Neighbor regression models (KNN) has been proposed. However, the condition is not satisfied when some near vertices have different values. To overcome such difficulty, c-regression which classify data points int o some clusters has been proposed to improve performance of regression analysis. We moreover propose new c-regression models on a graph with fuzzy numbers on vertices and show some numerical examples.</abstract><doi>10.20965/jaciii.2016.p0521</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1343-0130
ispartof Journal of advanced computational intelligence and intelligent informatics, 2016-07, Vol.20 (4), p.521-534
issn 1343-0130
1883-8014
language eng
recordid cdi_crossref_primary_10_20965_jaciii_2016_p0521
source DOAJ Directory of Open Access Journals
title Fuzzy c -Regression Models for Fuzzy Numbers on a Graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20c%20-Regression%20Models%20for%20Fuzzy%20Numbers%20on%20a%20Graph&rft.jtitle=Journal%20of%20advanced%20computational%20intelligence%20and%20intelligent%20informatics&rft.au=Higuchi,%20Tatsuya&rft.aucorp=University%20of%20Tsukuba&rft.date=2016-07-20&rft.volume=20&rft.issue=4&rft.spage=521&rft.epage=534&rft.pages=521-534&rft.issn=1343-0130&rft.eissn=1883-8014&rft_id=info:doi/10.20965/jaciii.2016.p0521&rft_dat=%3Ccrossref%3E10_20965_jaciii_2016_p0521%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true