Semi-Supervised Sequential Kernel Regression Models with Penalty Functions
Switching regression models can output multiple clusters and regression models. However, there is one problem: the results have a strong dependency on the predefined number of clusters. To avoid these drawbacks, we have researched sequential extractions. In sequential extractions process, one cluste...
Gespeichert in:
Veröffentlicht in: | Journal of advanced computational intelligence and intelligent informatics 2015-01, Vol.19 (1), p.51-57 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | 1 |
container_start_page | 51 |
container_title | Journal of advanced computational intelligence and intelligent informatics |
container_volume | 19 |
creator | Tang, Hengjin Miyamoto, Sadaaki Endo, Yasunori |
description | Switching regression models can output multiple clusters and regression models. However, there is one problem: the results have a strong dependency on the predefined number of clusters. To avoid these drawbacks, we have researched sequential extractions. In sequential extractions process, one cluster is extracted at a time using a method of noise-detection, and the number of clusters are determined automatically. We propose semi-supervised sequential kernel regression models with penalty functions. Additionally, we also find that the sensitivity against the regularization parameter λ can be alleviated by semi-supervisions using penalty functions. We show the effectiveness of the proposed method by using numerical examples. |
doi_str_mv | 10.20965/jaciii.2015.p0051 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_20965_jaciii_2015_p0051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_20965_jaciii_2015_p0051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2721-3f40c86b20d9ff5636d5c8961075a2d29c34c755bd6c30304af37bfebc932bb73</originalsourceid><addsrcrecordid>eNotkMtOwzAURC0EElXpD7DyD6Rc-8ZOskQV5VUEIrCOHOcaXKVJsVNQ_57QspozGmkWh7FLAXMJhVZXa2O992MRar4FUOKETUSeY5KDSE9HxhQTEAjnbBbjGmBkqSEVE_ZQ0sYn5W5L4dtHanhJXzvqBm9a_kiho5a_0kegGH3f8ae-oTbyHz988hfqTDvs-XLX2WEc4wU7c6aNNPvPKXtf3rwt7pLV8-394nqVWJlJkaBLwea6ltAUzimNulE2L7SATBnZyMJiajOl6kZbBITUOMxqR7UtUNZ1hlMmj7829DEGctU2-I0J-0pAdRBSHYVUf0KqgxD8BdfzVeo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Semi-Supervised Sequential Kernel Regression Models with Penalty Functions</title><source>DOAJ Directory of Open Access Journals</source><creator>Tang, Hengjin ; Miyamoto, Sadaaki ; Endo, Yasunori</creator><creatorcontrib>Tang, Hengjin ; Miyamoto, Sadaaki ; Endo, Yasunori ; Department of Risk Engineering, School of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan</creatorcontrib><description>Switching regression models can output multiple clusters and regression models. However, there is one problem: the results have a strong dependency on the predefined number of clusters. To avoid these drawbacks, we have researched sequential extractions. In sequential extractions process, one cluster is extracted at a time using a method of noise-detection, and the number of clusters are determined automatically. We propose semi-supervised sequential kernel regression models with penalty functions. Additionally, we also find that the sensitivity against the regularization parameter λ can be alleviated by semi-supervisions using penalty functions. We show the effectiveness of the proposed method by using numerical examples.</description><identifier>ISSN: 1343-0130</identifier><identifier>EISSN: 1883-8014</identifier><identifier>DOI: 10.20965/jaciii.2015.p0051</identifier><language>eng</language><ispartof>Journal of advanced computational intelligence and intelligent informatics, 2015-01, Vol.19 (1), p.51-57</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2721-3f40c86b20d9ff5636d5c8961075a2d29c34c755bd6c30304af37bfebc932bb73</citedby><cites>FETCH-LOGICAL-c2721-3f40c86b20d9ff5636d5c8961075a2d29c34c755bd6c30304af37bfebc932bb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Tang, Hengjin</creatorcontrib><creatorcontrib>Miyamoto, Sadaaki</creatorcontrib><creatorcontrib>Endo, Yasunori</creatorcontrib><creatorcontrib>Department of Risk Engineering, School of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan</creatorcontrib><title>Semi-Supervised Sequential Kernel Regression Models with Penalty Functions</title><title>Journal of advanced computational intelligence and intelligent informatics</title><description>Switching regression models can output multiple clusters and regression models. However, there is one problem: the results have a strong dependency on the predefined number of clusters. To avoid these drawbacks, we have researched sequential extractions. In sequential extractions process, one cluster is extracted at a time using a method of noise-detection, and the number of clusters are determined automatically. We propose semi-supervised sequential kernel regression models with penalty functions. Additionally, we also find that the sensitivity against the regularization parameter λ can be alleviated by semi-supervisions using penalty functions. We show the effectiveness of the proposed method by using numerical examples.</description><issn>1343-0130</issn><issn>1883-8014</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwzAURC0EElXpD7DyD6Rc-8ZOskQV5VUEIrCOHOcaXKVJsVNQ_57QspozGmkWh7FLAXMJhVZXa2O992MRar4FUOKETUSeY5KDSE9HxhQTEAjnbBbjGmBkqSEVE_ZQ0sYn5W5L4dtHanhJXzvqBm9a_kiho5a_0kegGH3f8ae-oTbyHz988hfqTDvs-XLX2WEc4wU7c6aNNPvPKXtf3rwt7pLV8-394nqVWJlJkaBLwea6ltAUzimNulE2L7SATBnZyMJiajOl6kZbBITUOMxqR7UtUNZ1hlMmj7829DEGctU2-I0J-0pAdRBSHYVUf0KqgxD8BdfzVeo</recordid><startdate>20150120</startdate><enddate>20150120</enddate><creator>Tang, Hengjin</creator><creator>Miyamoto, Sadaaki</creator><creator>Endo, Yasunori</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150120</creationdate><title>Semi-Supervised Sequential Kernel Regression Models with Penalty Functions</title><author>Tang, Hengjin ; Miyamoto, Sadaaki ; Endo, Yasunori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2721-3f40c86b20d9ff5636d5c8961075a2d29c34c755bd6c30304af37bfebc932bb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Hengjin</creatorcontrib><creatorcontrib>Miyamoto, Sadaaki</creatorcontrib><creatorcontrib>Endo, Yasunori</creatorcontrib><creatorcontrib>Department of Risk Engineering, School of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Hengjin</au><au>Miyamoto, Sadaaki</au><au>Endo, Yasunori</au><aucorp>Department of Risk Engineering, School of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-Supervised Sequential Kernel Regression Models with Penalty Functions</atitle><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle><date>2015-01-20</date><risdate>2015</risdate><volume>19</volume><issue>1</issue><spage>51</spage><epage>57</epage><pages>51-57</pages><issn>1343-0130</issn><eissn>1883-8014</eissn><abstract>Switching regression models can output multiple clusters and regression models. However, there is one problem: the results have a strong dependency on the predefined number of clusters. To avoid these drawbacks, we have researched sequential extractions. In sequential extractions process, one cluster is extracted at a time using a method of noise-detection, and the number of clusters are determined automatically. We propose semi-supervised sequential kernel regression models with penalty functions. Additionally, we also find that the sensitivity against the regularization parameter λ can be alleviated by semi-supervisions using penalty functions. We show the effectiveness of the proposed method by using numerical examples.</abstract><doi>10.20965/jaciii.2015.p0051</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1343-0130 |
ispartof | Journal of advanced computational intelligence and intelligent informatics, 2015-01, Vol.19 (1), p.51-57 |
issn | 1343-0130 1883-8014 |
language | eng |
recordid | cdi_crossref_primary_10_20965_jaciii_2015_p0051 |
source | DOAJ Directory of Open Access Journals |
title | Semi-Supervised Sequential Kernel Regression Models with Penalty Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A00%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-Supervised%20Sequential%20Kernel%20Regression%20Models%20with%20Penalty%20Functions&rft.jtitle=Journal%20of%20advanced%20computational%20intelligence%20and%20intelligent%20informatics&rft.au=Tang,%20Hengjin&rft.aucorp=Department%20of%20Risk%20Engineering,%20School%20of%20Systems%20and%20Information%20Engineering,%20University%20of%20Tsukuba,%201-1-1%20Tennodai,%20Tsukuba,%20Ibaraki%20305-8573,%20Japan&rft.date=2015-01-20&rft.volume=19&rft.issue=1&rft.spage=51&rft.epage=57&rft.pages=51-57&rft.issn=1343-0130&rft.eissn=1883-8014&rft_id=info:doi/10.20965/jaciii.2015.p0051&rft_dat=%3Ccrossref%3E10_20965_jaciii_2015_p0051%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |