Modeling and optimization of SOFC based on Metaheuristics

This study proposed a well-organized technique for the optimal selection of the unknown parameters for the Solid Oxide Fuel Cell (SOFC) model. The main idea is to propose a new metaheuristic method to achieve more efficient results for the model to give a satisfying agreement between the voltage and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrochemical science 2020-11, Vol.15 (11), p.11008-11023
Hauptverfasser: Wu, Qixiang, Shafiee, Mohammadreza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11023
container_issue 11
container_start_page 11008
container_title International journal of electrochemical science
container_volume 15
creator Wu, Qixiang
Shafiee, Mohammadreza
description This study proposed a well-organized technique for the optimal selection of the unknown parameters for the Solid Oxide Fuel Cell (SOFC) model. The main idea is to propose a new metaheuristic method to achieve more efficient results for the model to give a satisfying agreement between the voltage and current profile of the SOFC. The mean squared error (MSE) has been adopted as an objective function between the achieved data and the experimental data. For minimizing the MSE, a new modified version of the Stain Bowerbirds Optimization algorithm has been utilized. The proposed design is applied to simulated data and practical data to verify its efficiency. Finally, the robustness and the precision of the presented algorithm are compared and verified by some state of art metaheuristics including basic Satin Bowerbird Optimization algorithm (SBO), Differential evolution algorithms (DE), coRNA-GA, Chaotic Binary Shark Smell Optimization (BSSO), and Swarm Optimizer (SO).
doi_str_mv 10.20964/2020.11.01
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_20964_2020_11_01</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1452398123072000</els_id><sourcerecordid>S1452398123072000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-6971a803a433c3f03fb220ee806d694b25ae11815c62cfd1bc88e5552c25b4af3</originalsourceid><addsrcrecordid>eNptj81OwzAQhC0EElXpiRfIHSV4_ZfkiCIKlVr1AJwtx16DUZtUtkGCpydQDhyYy4403652CLkEWjHaKnHNKKMVQEXhhMxASFbytoHTP_6cLFJ6pZNEy0Vdz0i7GR3uwvBcmMEV4yGHffg0OYxDMfriYbvsit4knKKh2GA2L_gWQ8rBpgty5s0u4eJ3zsnT8vaxuy_X27tVd7MuLQeVS9XWYBrKjeDcck-57xmjiA1VTrWiZ9IgQAPSKma9g942DUopmWWyF8bzObk63rVxTCmi14cY9iZ-aKD6p7j-Lq4BNIWJlkcap5feA0adbMDBogsRbdZuDP_ufQHEAFqj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling and optimization of SOFC based on Metaheuristics</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wu, Qixiang ; Shafiee, Mohammadreza</creator><creatorcontrib>Wu, Qixiang ; Shafiee, Mohammadreza</creatorcontrib><description>This study proposed a well-organized technique for the optimal selection of the unknown parameters for the Solid Oxide Fuel Cell (SOFC) model. The main idea is to propose a new metaheuristic method to achieve more efficient results for the model to give a satisfying agreement between the voltage and current profile of the SOFC. The mean squared error (MSE) has been adopted as an objective function between the achieved data and the experimental data. For minimizing the MSE, a new modified version of the Stain Bowerbirds Optimization algorithm has been utilized. The proposed design is applied to simulated data and practical data to verify its efficiency. Finally, the robustness and the precision of the presented algorithm are compared and verified by some state of art metaheuristics including basic Satin Bowerbird Optimization algorithm (SBO), Differential evolution algorithms (DE), coRNA-GA, Chaotic Binary Shark Smell Optimization (BSSO), and Swarm Optimizer (SO).</description><identifier>ISSN: 1452-3981</identifier><identifier>EISSN: 1452-3981</identifier><identifier>DOI: 10.20964/2020.11.01</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>electrochemical model ; model estimation ; Solid Oxide Fuel Cell ; Stain Bowerbirds Optimization algorithm</subject><ispartof>International journal of electrochemical science, 2020-11, Vol.15 (11), p.11008-11023</ispartof><rights>2020 The Authors. Published by ESG</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-6971a803a433c3f03fb220ee806d694b25ae11815c62cfd1bc88e5552c25b4af3</citedby><cites>FETCH-LOGICAL-c316t-6971a803a433c3f03fb220ee806d694b25ae11815c62cfd1bc88e5552c25b4af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wu, Qixiang</creatorcontrib><creatorcontrib>Shafiee, Mohammadreza</creatorcontrib><title>Modeling and optimization of SOFC based on Metaheuristics</title><title>International journal of electrochemical science</title><description>This study proposed a well-organized technique for the optimal selection of the unknown parameters for the Solid Oxide Fuel Cell (SOFC) model. The main idea is to propose a new metaheuristic method to achieve more efficient results for the model to give a satisfying agreement between the voltage and current profile of the SOFC. The mean squared error (MSE) has been adopted as an objective function between the achieved data and the experimental data. For minimizing the MSE, a new modified version of the Stain Bowerbirds Optimization algorithm has been utilized. The proposed design is applied to simulated data and practical data to verify its efficiency. Finally, the robustness and the precision of the presented algorithm are compared and verified by some state of art metaheuristics including basic Satin Bowerbird Optimization algorithm (SBO), Differential evolution algorithms (DE), coRNA-GA, Chaotic Binary Shark Smell Optimization (BSSO), and Swarm Optimizer (SO).</description><subject>electrochemical model</subject><subject>model estimation</subject><subject>Solid Oxide Fuel Cell</subject><subject>Stain Bowerbirds Optimization algorithm</subject><issn>1452-3981</issn><issn>1452-3981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptj81OwzAQhC0EElXpiRfIHSV4_ZfkiCIKlVr1AJwtx16DUZtUtkGCpydQDhyYy4403652CLkEWjHaKnHNKKMVQEXhhMxASFbytoHTP_6cLFJ6pZNEy0Vdz0i7GR3uwvBcmMEV4yGHffg0OYxDMfriYbvsit4knKKh2GA2L_gWQ8rBpgty5s0u4eJ3zsnT8vaxuy_X27tVd7MuLQeVS9XWYBrKjeDcck-57xmjiA1VTrWiZ9IgQAPSKma9g942DUopmWWyF8bzObk63rVxTCmi14cY9iZ-aKD6p7j-Lq4BNIWJlkcap5feA0adbMDBogsRbdZuDP_ufQHEAFqj</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Wu, Qixiang</creator><creator>Shafiee, Mohammadreza</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201101</creationdate><title>Modeling and optimization of SOFC based on Metaheuristics</title><author>Wu, Qixiang ; Shafiee, Mohammadreza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-6971a803a433c3f03fb220ee806d694b25ae11815c62cfd1bc88e5552c25b4af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>electrochemical model</topic><topic>model estimation</topic><topic>Solid Oxide Fuel Cell</topic><topic>Stain Bowerbirds Optimization algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Qixiang</creatorcontrib><creatorcontrib>Shafiee, Mohammadreza</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>International journal of electrochemical science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Qixiang</au><au>Shafiee, Mohammadreza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and optimization of SOFC based on Metaheuristics</atitle><jtitle>International journal of electrochemical science</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>15</volume><issue>11</issue><spage>11008</spage><epage>11023</epage><pages>11008-11023</pages><issn>1452-3981</issn><eissn>1452-3981</eissn><abstract>This study proposed a well-organized technique for the optimal selection of the unknown parameters for the Solid Oxide Fuel Cell (SOFC) model. The main idea is to propose a new metaheuristic method to achieve more efficient results for the model to give a satisfying agreement between the voltage and current profile of the SOFC. The mean squared error (MSE) has been adopted as an objective function between the achieved data and the experimental data. For minimizing the MSE, a new modified version of the Stain Bowerbirds Optimization algorithm has been utilized. The proposed design is applied to simulated data and practical data to verify its efficiency. Finally, the robustness and the precision of the presented algorithm are compared and verified by some state of art metaheuristics including basic Satin Bowerbird Optimization algorithm (SBO), Differential evolution algorithms (DE), coRNA-GA, Chaotic Binary Shark Smell Optimization (BSSO), and Swarm Optimizer (SO).</abstract><pub>Elsevier B.V</pub><doi>10.20964/2020.11.01</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1452-3981
ispartof International journal of electrochemical science, 2020-11, Vol.15 (11), p.11008-11023
issn 1452-3981
1452-3981
language eng
recordid cdi_crossref_primary_10_20964_2020_11_01
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects electrochemical model
model estimation
Solid Oxide Fuel Cell
Stain Bowerbirds Optimization algorithm
title Modeling and optimization of SOFC based on Metaheuristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20optimization%20of%20SOFC%20based%20on%20Metaheuristics&rft.jtitle=International%20journal%20of%20electrochemical%20science&rft.au=Wu,%20Qixiang&rft.date=2020-11-01&rft.volume=15&rft.issue=11&rft.spage=11008&rft.epage=11023&rft.pages=11008-11023&rft.issn=1452-3981&rft.eissn=1452-3981&rft_id=info:doi/10.20964/2020.11.01&rft_dat=%3Celsevier_cross%3ES1452398123072000%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1452398123072000&rfr_iscdi=true