Electrochemical Performance of Li2FeSiO4 as Anode Material for Lithium-ion Batteries

The conventional cathode material Li2FeSiO4 (lithium iron orthosilicate) crystallites are synthesized by a solid state reaction, and used as the anode material for lithium-ion batteries. During the initial discharge, Li2FeSiO4 irreversibly decomposes and transforms. Although the resulted anodes hard...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrochemical science 2017-06, Vol.12 (6), p.5320-5330
Hauptverfasser: Liang, Er-Qian, Song, Li-Jun, Liu, Shuang-Shuang, Guo, Yuan, Yu, Bao-Jun, Wang, Cheng-Yang, Li, Ming-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5330
container_issue 6
container_start_page 5320
container_title International journal of electrochemical science
container_volume 12
creator Liang, Er-Qian
Song, Li-Jun
Liu, Shuang-Shuang
Guo, Yuan
Yu, Bao-Jun
Wang, Cheng-Yang
Li, Ming-Wei
description The conventional cathode material Li2FeSiO4 (lithium iron orthosilicate) crystallites are synthesized by a solid state reaction, and used as the anode material for lithium-ion batteries. During the initial discharge, Li2FeSiO4 irreversibly decomposes and transforms. Although the resulted anodes hardly contain Li2FeSiO4 crystal phase, they show nice capacities and well cycling stability. At a current density of 50 mA g−1, the anode exhibits an initial discharge/charge of 799/569 mAh g−1, and keeps a discharge/charge capacity of 550/542 mAh g−1 after 60 cycles with 95.3% charge capacity retention. At a current of 1000 mA g−1, the anode shows a charge capacity of 191 mAh g−1 with 99.5% coulombic efficiency during the 300th cycle. The anode material after 300 cycles presents many microcrystal structures. It is proposed that the Li2FeSiO4 anodes transfer energy via a reversible conversion reaction.
doi_str_mv 10.20964/2017.06.08
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_20964_2017_06_08</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1452398123106389</els_id><sourcerecordid>S1452398123106389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-327e158ad11cc90ae40281e535b1afb3cc61d4eb3728d3aabfa5c7b9394d5e0a3</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWGpP_oHcZWs-9-NYS6vCSgXrOcwmszTSbSRZBf-9qfXgwbnMwPvM8M5LyDVnc8GaUt0Kxqs5K-esPiMTrrQoZFPz8z_zJZml9MZyqUaqqpqQ7WqPdozB7nDwFvb0GWMf4gAHizT0tPVijS9-oygkujgEh_QJRow-o5nL-rjzH0Phw4HewXhUMF2Rix72CWe_fUpe16vt8qFoN_ePy0VbWMnLsZCiQq5rcJxb2zBAxUTNUUvdceg7aW3JncJOVqJ2EqDrQduqa2SjnEYGckpuTndtDClF7M179APEL8OZ-cnEHDMxrDSszrQ-0ZgtfXqMJlmP-U_nY87AuOD_3fsG0CdlJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrochemical Performance of Li2FeSiO4 as Anode Material for Lithium-ion Batteries</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Liang, Er-Qian ; Song, Li-Jun ; Liu, Shuang-Shuang ; Guo, Yuan ; Yu, Bao-Jun ; Wang, Cheng-Yang ; Li, Ming-Wei</creator><creatorcontrib>Liang, Er-Qian ; Song, Li-Jun ; Liu, Shuang-Shuang ; Guo, Yuan ; Yu, Bao-Jun ; Wang, Cheng-Yang ; Li, Ming-Wei</creatorcontrib><description>The conventional cathode material Li2FeSiO4 (lithium iron orthosilicate) crystallites are synthesized by a solid state reaction, and used as the anode material for lithium-ion batteries. During the initial discharge, Li2FeSiO4 irreversibly decomposes and transforms. Although the resulted anodes hardly contain Li2FeSiO4 crystal phase, they show nice capacities and well cycling stability. At a current density of 50 mA g−1, the anode exhibits an initial discharge/charge of 799/569 mAh g−1, and keeps a discharge/charge capacity of 550/542 mAh g−1 after 60 cycles with 95.3% charge capacity retention. At a current of 1000 mA g−1, the anode shows a charge capacity of 191 mAh g−1 with 99.5% coulombic efficiency during the 300th cycle. The anode material after 300 cycles presents many microcrystal structures. It is proposed that the Li2FeSiO4 anodes transfer energy via a reversible conversion reaction.</description><identifier>ISSN: 1452-3981</identifier><identifier>EISSN: 1452-3981</identifier><identifier>DOI: 10.20964/2017.06.08</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>anode material ; cycling stability ; Lithium iron orthosilicate ; lithium-ion battery</subject><ispartof>International journal of electrochemical science, 2017-06, Vol.12 (6), p.5320-5330</ispartof><rights>2017 The Authors. Published by ESG</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-327e158ad11cc90ae40281e535b1afb3cc61d4eb3728d3aabfa5c7b9394d5e0a3</citedby><cites>FETCH-LOGICAL-c316t-327e158ad11cc90ae40281e535b1afb3cc61d4eb3728d3aabfa5c7b9394d5e0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Liang, Er-Qian</creatorcontrib><creatorcontrib>Song, Li-Jun</creatorcontrib><creatorcontrib>Liu, Shuang-Shuang</creatorcontrib><creatorcontrib>Guo, Yuan</creatorcontrib><creatorcontrib>Yu, Bao-Jun</creatorcontrib><creatorcontrib>Wang, Cheng-Yang</creatorcontrib><creatorcontrib>Li, Ming-Wei</creatorcontrib><title>Electrochemical Performance of Li2FeSiO4 as Anode Material for Lithium-ion Batteries</title><title>International journal of electrochemical science</title><description>The conventional cathode material Li2FeSiO4 (lithium iron orthosilicate) crystallites are synthesized by a solid state reaction, and used as the anode material for lithium-ion batteries. During the initial discharge, Li2FeSiO4 irreversibly decomposes and transforms. Although the resulted anodes hardly contain Li2FeSiO4 crystal phase, they show nice capacities and well cycling stability. At a current density of 50 mA g−1, the anode exhibits an initial discharge/charge of 799/569 mAh g−1, and keeps a discharge/charge capacity of 550/542 mAh g−1 after 60 cycles with 95.3% charge capacity retention. At a current of 1000 mA g−1, the anode shows a charge capacity of 191 mAh g−1 with 99.5% coulombic efficiency during the 300th cycle. The anode material after 300 cycles presents many microcrystal structures. It is proposed that the Li2FeSiO4 anodes transfer energy via a reversible conversion reaction.</description><subject>anode material</subject><subject>cycling stability</subject><subject>Lithium iron orthosilicate</subject><subject>lithium-ion battery</subject><issn>1452-3981</issn><issn>1452-3981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEQhoMoWGpP_oHcZWs-9-NYS6vCSgXrOcwmszTSbSRZBf-9qfXgwbnMwPvM8M5LyDVnc8GaUt0Kxqs5K-esPiMTrrQoZFPz8z_zJZml9MZyqUaqqpqQ7WqPdozB7nDwFvb0GWMf4gAHizT0tPVijS9-oygkujgEh_QJRow-o5nL-rjzH0Phw4HewXhUMF2Rix72CWe_fUpe16vt8qFoN_ePy0VbWMnLsZCiQq5rcJxb2zBAxUTNUUvdceg7aW3JncJOVqJ2EqDrQduqa2SjnEYGckpuTndtDClF7M179APEL8OZ-cnEHDMxrDSszrQ-0ZgtfXqMJlmP-U_nY87AuOD_3fsG0CdlJQ</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Liang, Er-Qian</creator><creator>Song, Li-Jun</creator><creator>Liu, Shuang-Shuang</creator><creator>Guo, Yuan</creator><creator>Yu, Bao-Jun</creator><creator>Wang, Cheng-Yang</creator><creator>Li, Ming-Wei</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201706</creationdate><title>Electrochemical Performance of Li2FeSiO4 as Anode Material for Lithium-ion Batteries</title><author>Liang, Er-Qian ; Song, Li-Jun ; Liu, Shuang-Shuang ; Guo, Yuan ; Yu, Bao-Jun ; Wang, Cheng-Yang ; Li, Ming-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-327e158ad11cc90ae40281e535b1afb3cc61d4eb3728d3aabfa5c7b9394d5e0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>anode material</topic><topic>cycling stability</topic><topic>Lithium iron orthosilicate</topic><topic>lithium-ion battery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Er-Qian</creatorcontrib><creatorcontrib>Song, Li-Jun</creatorcontrib><creatorcontrib>Liu, Shuang-Shuang</creatorcontrib><creatorcontrib>Guo, Yuan</creatorcontrib><creatorcontrib>Yu, Bao-Jun</creatorcontrib><creatorcontrib>Wang, Cheng-Yang</creatorcontrib><creatorcontrib>Li, Ming-Wei</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>International journal of electrochemical science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Er-Qian</au><au>Song, Li-Jun</au><au>Liu, Shuang-Shuang</au><au>Guo, Yuan</au><au>Yu, Bao-Jun</au><au>Wang, Cheng-Yang</au><au>Li, Ming-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Performance of Li2FeSiO4 as Anode Material for Lithium-ion Batteries</atitle><jtitle>International journal of electrochemical science</jtitle><date>2017-06</date><risdate>2017</risdate><volume>12</volume><issue>6</issue><spage>5320</spage><epage>5330</epage><pages>5320-5330</pages><issn>1452-3981</issn><eissn>1452-3981</eissn><abstract>The conventional cathode material Li2FeSiO4 (lithium iron orthosilicate) crystallites are synthesized by a solid state reaction, and used as the anode material for lithium-ion batteries. During the initial discharge, Li2FeSiO4 irreversibly decomposes and transforms. Although the resulted anodes hardly contain Li2FeSiO4 crystal phase, they show nice capacities and well cycling stability. At a current density of 50 mA g−1, the anode exhibits an initial discharge/charge of 799/569 mAh g−1, and keeps a discharge/charge capacity of 550/542 mAh g−1 after 60 cycles with 95.3% charge capacity retention. At a current of 1000 mA g−1, the anode shows a charge capacity of 191 mAh g−1 with 99.5% coulombic efficiency during the 300th cycle. The anode material after 300 cycles presents many microcrystal structures. It is proposed that the Li2FeSiO4 anodes transfer energy via a reversible conversion reaction.</abstract><pub>Elsevier B.V</pub><doi>10.20964/2017.06.08</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1452-3981
ispartof International journal of electrochemical science, 2017-06, Vol.12 (6), p.5320-5330
issn 1452-3981
1452-3981
language eng
recordid cdi_crossref_primary_10_20964_2017_06_08
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects anode material
cycling stability
Lithium iron orthosilicate
lithium-ion battery
title Electrochemical Performance of Li2FeSiO4 as Anode Material for Lithium-ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A55%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Performance%20of%20Li2FeSiO4%20as%20Anode%20Material%20for%20Lithium-ion%20Batteries&rft.jtitle=International%20journal%20of%20electrochemical%20science&rft.au=Liang,%20Er-Qian&rft.date=2017-06&rft.volume=12&rft.issue=6&rft.spage=5320&rft.epage=5330&rft.pages=5320-5330&rft.issn=1452-3981&rft.eissn=1452-3981&rft_id=info:doi/10.20964/2017.06.08&rft_dat=%3Celsevier_cross%3ES1452398123106389%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1452398123106389&rfr_iscdi=true