Eyeglass Frame Identification Using Pixel Measurement Method and k-NN Algorithm

Eyeglasses have a variety of types and shapes recently. The shape of the eyeglasses frames are rectangular, square, oval, pilot, round, geometric, and wrap. This study proposed an approach them to recognize the shape of eyeglasses. The digital image becomes an important part of this research. Eyegla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Jurnal infotel (Online) 2017-11, Vol.9 (4), p.429
Hauptverfasser: Zul, Muhammad Ihsan, Muslim, Istianah, Karimah, Atiya
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 429
container_title Jurnal infotel (Online)
container_volume 9
creator Zul, Muhammad Ihsan
Muslim, Istianah
Karimah, Atiya
description Eyeglasses have a variety of types and shapes recently. The shape of the eyeglasses frames are rectangular, square, oval, pilot, round, geometric, and wrap. This study proposed an approach them to recognize the shape of eyeglasses. The digital image becomes an important part of this research. Eyeglasses image is taken from IP Camera and other sources (internet). The image should be processed into grayscale, then convert it to the binary image to get the height and width of the eyeglasses. The height and width were used to perform feature extraction. It generates 6 attributes, 3 ratios of glasses height and 3 ratios of eyeglasses width. That six attributes are classified by the k-NN algorithm. Based on the tests performed the accuracy reaches around 58% - 71%
doi_str_mv 10.20895/infotel.v9i4.317
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_20895_infotel_v9i4_317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_20895_infotel_v9i4_317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c907-66f44e5fdcb3f667c5746dad1c4260a0df67138c83fb6885c4b955c6deb9bfb03</originalsourceid><addsrcrecordid>eNotkMtOAjEARRujiQT5AHf9gRnb6Wu6JASUBMEFrps-h8Z5mHY08veOyOqexc3NzQHgEaOyQrVkT7EPw-jb8ltGWhIsbsCsohwVSEpxOzGqWUF4Xd-DRc7RIMIrxjCrZuCwPvum1TnDTdKdh1vn-zGGaPUYhx6-59g38C3--Ba-ep2_ku-mwsTjaXBQ9w5-FPs9XLbNkOJ46h7AXdBt9otrzsFxsz6uXord4Xm7Wu4KK5EoOA-UehacNSRwLiwTlDvtsKUVRxq5wAUmta1JMNNtZqmRjFnuvJEmTP_nAP_P2jTknHxQnyl2Op0VRuriRF2dqD8nanJCfgGV1lh8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Eyeglass Frame Identification Using Pixel Measurement Method and k-NN Algorithm</title><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Zul, Muhammad Ihsan ; Muslim, Istianah ; Karimah, Atiya</creator><creatorcontrib>Zul, Muhammad Ihsan ; Muslim, Istianah ; Karimah, Atiya</creatorcontrib><description>Eyeglasses have a variety of types and shapes recently. The shape of the eyeglasses frames are rectangular, square, oval, pilot, round, geometric, and wrap. This study proposed an approach them to recognize the shape of eyeglasses. The digital image becomes an important part of this research. Eyeglasses image is taken from IP Camera and other sources (internet). The image should be processed into grayscale, then convert it to the binary image to get the height and width of the eyeglasses. The height and width were used to perform feature extraction. It generates 6 attributes, 3 ratios of glasses height and 3 ratios of eyeglasses width. That six attributes are classified by the k-NN algorithm. Based on the tests performed the accuracy reaches around 58% - 71%</description><identifier>ISSN: 2085-3688</identifier><identifier>EISSN: 2460-0997</identifier><identifier>DOI: 10.20895/infotel.v9i4.317</identifier><language>eng</language><ispartof>Jurnal infotel (Online), 2017-11, Vol.9 (4), p.429</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c907-66f44e5fdcb3f667c5746dad1c4260a0df67138c83fb6885c4b955c6deb9bfb03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zul, Muhammad Ihsan</creatorcontrib><creatorcontrib>Muslim, Istianah</creatorcontrib><creatorcontrib>Karimah, Atiya</creatorcontrib><title>Eyeglass Frame Identification Using Pixel Measurement Method and k-NN Algorithm</title><title>Jurnal infotel (Online)</title><description>Eyeglasses have a variety of types and shapes recently. The shape of the eyeglasses frames are rectangular, square, oval, pilot, round, geometric, and wrap. This study proposed an approach them to recognize the shape of eyeglasses. The digital image becomes an important part of this research. Eyeglasses image is taken from IP Camera and other sources (internet). The image should be processed into grayscale, then convert it to the binary image to get the height and width of the eyeglasses. The height and width were used to perform feature extraction. It generates 6 attributes, 3 ratios of glasses height and 3 ratios of eyeglasses width. That six attributes are classified by the k-NN algorithm. Based on the tests performed the accuracy reaches around 58% - 71%</description><issn>2085-3688</issn><issn>2460-0997</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkMtOAjEARRujiQT5AHf9gRnb6Wu6JASUBMEFrps-h8Z5mHY08veOyOqexc3NzQHgEaOyQrVkT7EPw-jb8ltGWhIsbsCsohwVSEpxOzGqWUF4Xd-DRc7RIMIrxjCrZuCwPvum1TnDTdKdh1vn-zGGaPUYhx6-59g38C3--Ba-ep2_ku-mwsTjaXBQ9w5-FPs9XLbNkOJ46h7AXdBt9otrzsFxsz6uXord4Xm7Wu4KK5EoOA-UehacNSRwLiwTlDvtsKUVRxq5wAUmta1JMNNtZqmRjFnuvJEmTP_nAP_P2jTknHxQnyl2Op0VRuriRF2dqD8nanJCfgGV1lh8</recordid><startdate>20171116</startdate><enddate>20171116</enddate><creator>Zul, Muhammad Ihsan</creator><creator>Muslim, Istianah</creator><creator>Karimah, Atiya</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171116</creationdate><title>Eyeglass Frame Identification Using Pixel Measurement Method and k-NN Algorithm</title><author>Zul, Muhammad Ihsan ; Muslim, Istianah ; Karimah, Atiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c907-66f44e5fdcb3f667c5746dad1c4260a0df67138c83fb6885c4b955c6deb9bfb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zul, Muhammad Ihsan</creatorcontrib><creatorcontrib>Muslim, Istianah</creatorcontrib><creatorcontrib>Karimah, Atiya</creatorcontrib><collection>CrossRef</collection><jtitle>Jurnal infotel (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zul, Muhammad Ihsan</au><au>Muslim, Istianah</au><au>Karimah, Atiya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eyeglass Frame Identification Using Pixel Measurement Method and k-NN Algorithm</atitle><jtitle>Jurnal infotel (Online)</jtitle><date>2017-11-16</date><risdate>2017</risdate><volume>9</volume><issue>4</issue><spage>429</spage><pages>429-</pages><issn>2085-3688</issn><eissn>2460-0997</eissn><abstract>Eyeglasses have a variety of types and shapes recently. The shape of the eyeglasses frames are rectangular, square, oval, pilot, round, geometric, and wrap. This study proposed an approach them to recognize the shape of eyeglasses. The digital image becomes an important part of this research. Eyeglasses image is taken from IP Camera and other sources (internet). The image should be processed into grayscale, then convert it to the binary image to get the height and width of the eyeglasses. The height and width were used to perform feature extraction. It generates 6 attributes, 3 ratios of glasses height and 3 ratios of eyeglasses width. That six attributes are classified by the k-NN algorithm. Based on the tests performed the accuracy reaches around 58% - 71%</abstract><doi>10.20895/infotel.v9i4.317</doi></addata></record>
fulltext fulltext
identifier ISSN: 2085-3688
ispartof Jurnal infotel (Online), 2017-11, Vol.9 (4), p.429
issn 2085-3688
2460-0997
language eng
recordid cdi_crossref_primary_10_20895_infotel_v9i4_317
source Alma/SFX Local Collection; EZB Electronic Journals Library
title Eyeglass Frame Identification Using Pixel Measurement Method and k-NN Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A03%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eyeglass%20Frame%20Identification%20Using%20Pixel%20Measurement%20Method%20and%20k-NN%20Algorithm&rft.jtitle=Jurnal%20infotel%20(Online)&rft.au=Zul,%20Muhammad%20Ihsan&rft.date=2017-11-16&rft.volume=9&rft.issue=4&rft.spage=429&rft.pages=429-&rft.issn=2085-3688&rft.eissn=2460-0997&rft_id=info:doi/10.20895/infotel.v9i4.317&rft_dat=%3Ccrossref%3E10_20895_infotel_v9i4_317%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true