Eyeglass Frame Identification Using Pixel Measurement Method and k-NN Algorithm
Eyeglasses have a variety of types and shapes recently. The shape of the eyeglasses frames are rectangular, square, oval, pilot, round, geometric, and wrap. This study proposed an approach them to recognize the shape of eyeglasses. The digital image becomes an important part of this research. Eyegla...
Gespeichert in:
Veröffentlicht in: | Jurnal infotel (Online) 2017-11, Vol.9 (4), p.429 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 429 |
container_title | Jurnal infotel (Online) |
container_volume | 9 |
creator | Zul, Muhammad Ihsan Muslim, Istianah Karimah, Atiya |
description | Eyeglasses have a variety of types and shapes recently. The shape of the eyeglasses frames are rectangular, square, oval, pilot, round, geometric, and wrap. This study proposed an approach them to recognize the shape of eyeglasses. The digital image becomes an important part of this research. Eyeglasses image is taken from IP Camera and other sources (internet). The image should be processed into grayscale, then convert it to the binary image to get the height and width of the eyeglasses. The height and width were used to perform feature extraction. It generates 6 attributes, 3 ratios of glasses height and 3 ratios of eyeglasses width. That six attributes are classified by the k-NN algorithm. Based on the tests performed the accuracy reaches around 58% - 71% |
doi_str_mv | 10.20895/infotel.v9i4.317 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_20895_infotel_v9i4_317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_20895_infotel_v9i4_317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c907-66f44e5fdcb3f667c5746dad1c4260a0df67138c83fb6885c4b955c6deb9bfb03</originalsourceid><addsrcrecordid>eNotkMtOAjEARRujiQT5AHf9gRnb6Wu6JASUBMEFrps-h8Z5mHY08veOyOqexc3NzQHgEaOyQrVkT7EPw-jb8ltGWhIsbsCsohwVSEpxOzGqWUF4Xd-DRc7RIMIrxjCrZuCwPvum1TnDTdKdh1vn-zGGaPUYhx6-59g38C3--Ba-ep2_ku-mwsTjaXBQ9w5-FPs9XLbNkOJ46h7AXdBt9otrzsFxsz6uXord4Xm7Wu4KK5EoOA-UehacNSRwLiwTlDvtsKUVRxq5wAUmta1JMNNtZqmRjFnuvJEmTP_nAP_P2jTknHxQnyl2Op0VRuriRF2dqD8nanJCfgGV1lh8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Eyeglass Frame Identification Using Pixel Measurement Method and k-NN Algorithm</title><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Zul, Muhammad Ihsan ; Muslim, Istianah ; Karimah, Atiya</creator><creatorcontrib>Zul, Muhammad Ihsan ; Muslim, Istianah ; Karimah, Atiya</creatorcontrib><description>Eyeglasses have a variety of types and shapes recently. The shape of the eyeglasses frames are rectangular, square, oval, pilot, round, geometric, and wrap. This study proposed an approach them to recognize the shape of eyeglasses. The digital image becomes an important part of this research. Eyeglasses image is taken from IP Camera and other sources (internet). The image should be processed into grayscale, then convert it to the binary image to get the height and width of the eyeglasses. The height and width were used to perform feature extraction. It generates 6 attributes, 3 ratios of glasses height and 3 ratios of eyeglasses width. That six attributes are classified by the k-NN algorithm. Based on the tests performed the accuracy reaches around 58% - 71%</description><identifier>ISSN: 2085-3688</identifier><identifier>EISSN: 2460-0997</identifier><identifier>DOI: 10.20895/infotel.v9i4.317</identifier><language>eng</language><ispartof>Jurnal infotel (Online), 2017-11, Vol.9 (4), p.429</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c907-66f44e5fdcb3f667c5746dad1c4260a0df67138c83fb6885c4b955c6deb9bfb03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zul, Muhammad Ihsan</creatorcontrib><creatorcontrib>Muslim, Istianah</creatorcontrib><creatorcontrib>Karimah, Atiya</creatorcontrib><title>Eyeglass Frame Identification Using Pixel Measurement Method and k-NN Algorithm</title><title>Jurnal infotel (Online)</title><description>Eyeglasses have a variety of types and shapes recently. The shape of the eyeglasses frames are rectangular, square, oval, pilot, round, geometric, and wrap. This study proposed an approach them to recognize the shape of eyeglasses. The digital image becomes an important part of this research. Eyeglasses image is taken from IP Camera and other sources (internet). The image should be processed into grayscale, then convert it to the binary image to get the height and width of the eyeglasses. The height and width were used to perform feature extraction. It generates 6 attributes, 3 ratios of glasses height and 3 ratios of eyeglasses width. That six attributes are classified by the k-NN algorithm. Based on the tests performed the accuracy reaches around 58% - 71%</description><issn>2085-3688</issn><issn>2460-0997</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkMtOAjEARRujiQT5AHf9gRnb6Wu6JASUBMEFrps-h8Z5mHY08veOyOqexc3NzQHgEaOyQrVkT7EPw-jb8ltGWhIsbsCsohwVSEpxOzGqWUF4Xd-DRc7RIMIrxjCrZuCwPvum1TnDTdKdh1vn-zGGaPUYhx6-59g38C3--Ba-ep2_ku-mwsTjaXBQ9w5-FPs9XLbNkOJ46h7AXdBt9otrzsFxsz6uXord4Xm7Wu4KK5EoOA-UehacNSRwLiwTlDvtsKUVRxq5wAUmta1JMNNtZqmRjFnuvJEmTP_nAP_P2jTknHxQnyl2Op0VRuriRF2dqD8nanJCfgGV1lh8</recordid><startdate>20171116</startdate><enddate>20171116</enddate><creator>Zul, Muhammad Ihsan</creator><creator>Muslim, Istianah</creator><creator>Karimah, Atiya</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171116</creationdate><title>Eyeglass Frame Identification Using Pixel Measurement Method and k-NN Algorithm</title><author>Zul, Muhammad Ihsan ; Muslim, Istianah ; Karimah, Atiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c907-66f44e5fdcb3f667c5746dad1c4260a0df67138c83fb6885c4b955c6deb9bfb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zul, Muhammad Ihsan</creatorcontrib><creatorcontrib>Muslim, Istianah</creatorcontrib><creatorcontrib>Karimah, Atiya</creatorcontrib><collection>CrossRef</collection><jtitle>Jurnal infotel (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zul, Muhammad Ihsan</au><au>Muslim, Istianah</au><au>Karimah, Atiya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eyeglass Frame Identification Using Pixel Measurement Method and k-NN Algorithm</atitle><jtitle>Jurnal infotel (Online)</jtitle><date>2017-11-16</date><risdate>2017</risdate><volume>9</volume><issue>4</issue><spage>429</spage><pages>429-</pages><issn>2085-3688</issn><eissn>2460-0997</eissn><abstract>Eyeglasses have a variety of types and shapes recently. The shape of the eyeglasses frames are rectangular, square, oval, pilot, round, geometric, and wrap. This study proposed an approach them to recognize the shape of eyeglasses. The digital image becomes an important part of this research. Eyeglasses image is taken from IP Camera and other sources (internet). The image should be processed into grayscale, then convert it to the binary image to get the height and width of the eyeglasses. The height and width were used to perform feature extraction. It generates 6 attributes, 3 ratios of glasses height and 3 ratios of eyeglasses width. That six attributes are classified by the k-NN algorithm. Based on the tests performed the accuracy reaches around 58% - 71%</abstract><doi>10.20895/infotel.v9i4.317</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2085-3688 |
ispartof | Jurnal infotel (Online), 2017-11, Vol.9 (4), p.429 |
issn | 2085-3688 2460-0997 |
language | eng |
recordid | cdi_crossref_primary_10_20895_infotel_v9i4_317 |
source | Alma/SFX Local Collection; EZB Electronic Journals Library |
title | Eyeglass Frame Identification Using Pixel Measurement Method and k-NN Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A03%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eyeglass%20Frame%20Identification%20Using%20Pixel%20Measurement%20Method%20and%20k-NN%20Algorithm&rft.jtitle=Jurnal%20infotel%20(Online)&rft.au=Zul,%20Muhammad%20Ihsan&rft.date=2017-11-16&rft.volume=9&rft.issue=4&rft.spage=429&rft.pages=429-&rft.issn=2085-3688&rft.eissn=2460-0997&rft_id=info:doi/10.20895/infotel.v9i4.317&rft_dat=%3Ccrossref%3E10_20895_infotel_v9i4_317%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |