On variable step highly stable 4-stage Hermite-Birkhoff solvers for stiff ODEs

Variable-step (VS) \(4\)-stage \(k\)-step Hermite--Birkhoff (HB) methods of order \(p=(k+1)\), denoted by HB\((p)\), are constructed as a combination of linear \(k\)-step methods of order \((p-2)\) and a two-step diagonally implicit \(4\)-stage Runge--Kutta method of order 3 (TSDIRK3) for solving st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Modern Methods in Numerical Mathematics 2016-07, Vol.7 (2), p.31
Hauptverfasser: Nguyen-Ba, Truong, Giordano, Thierry
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 31
container_title Journal of Modern Methods in Numerical Mathematics
container_volume 7
creator Nguyen-Ba, Truong
Giordano, Thierry
description Variable-step (VS) \(4\)-stage \(k\)-step Hermite--Birkhoff (HB) methods of order \(p=(k+1)\), denoted by HB\((p)\), are constructed as a combination of linear \(k\)-step methods of order \((p-2)\) and a two-step diagonally implicit \(4\)-stage Runge--Kutta method of order 3 (TSDIRK3) for solving stiff ordinary differential equations. The main reason for considering this class of formulae is to obtain a set of \(k\)-step methods which are highly stable and are suitable for the integration of stiff differential systems whose Jacobians have some large eigenvalues lying close to the imaginary axis. The approach, described in the present paper, allows us to develop \(L\)-stable \(k\)-step methods of order up to 7 and \(L(\alpha)\)-stable methods of order up to 10 with \(\alpha > 64^\circ\). Fast algorithms are developed for solving confluent Vandermonde-type systems of the new methods in O\((p^2)\) operations to obtain HB interpolation polynomials in terms of generalized Lagrange basis functions. The step sizes of these methods are controlled by a local error estimator. Selected HB(\(p\)) of order \(p\), \(p=4,5,\ldots,9\), compare favorably with existing Cash modified extended backward differentiation formulae, MEBDF(\(p\)), \(p=4,5,\ldots,8\) in solving problems often used to test highly stable stiff ODE solvers on the basis of CPU time, number of steps and error at the endpoint of the integration interval.
doi_str_mv 10.20454/jmmnm.2016.1057
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_20454_jmmnm_2016_1057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_20454_jmmnm_2016_1057</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_20454_jmmnm_2016_10573</originalsourceid><addsrcrecordid>eNqdjssOgjAQRRujiUbZu-wPoAMWkK2vuJKN-wZNC0UqZoaQ8PcW4hc4m3tycyc5jK0D2IQgIrGtrH1bx0G8CSBKJmwRQgq-SBKY_ngfpvGceUQVuEuiMNqLBbtlb97laPJHrTi16sNLU5R173ishO-gUPyq0JpW-QeDr7LRmlNTdwqJ6wbd1rgmO51pxWY6r0l5v1wyuJzvx6v_xIYIlZYfNDbHXgYgR3U5qstBXQ7quz9evrsPTWI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On variable step highly stable 4-stage Hermite-Birkhoff solvers for stiff ODEs</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nguyen-Ba, Truong ; Giordano, Thierry</creator><creatorcontrib>Nguyen-Ba, Truong ; Giordano, Thierry</creatorcontrib><description>Variable-step (VS) \(4\)-stage \(k\)-step Hermite--Birkhoff (HB) methods of order \(p=(k+1)\), denoted by HB\((p)\), are constructed as a combination of linear \(k\)-step methods of order \((p-2)\) and a two-step diagonally implicit \(4\)-stage Runge--Kutta method of order 3 (TSDIRK3) for solving stiff ordinary differential equations. The main reason for considering this class of formulae is to obtain a set of \(k\)-step methods which are highly stable and are suitable for the integration of stiff differential systems whose Jacobians have some large eigenvalues lying close to the imaginary axis. The approach, described in the present paper, allows us to develop \(L\)-stable \(k\)-step methods of order up to 7 and \(L(\alpha)\)-stable methods of order up to 10 with \(\alpha &gt; 64^\circ\). Fast algorithms are developed for solving confluent Vandermonde-type systems of the new methods in O\((p^2)\) operations to obtain HB interpolation polynomials in terms of generalized Lagrange basis functions. The step sizes of these methods are controlled by a local error estimator. Selected HB(\(p\)) of order \(p\), \(p=4,5,\ldots,9\), compare favorably with existing Cash modified extended backward differentiation formulae, MEBDF(\(p\)), \(p=4,5,\ldots,8\) in solving problems often used to test highly stable stiff ODE solvers on the basis of CPU time, number of steps and error at the endpoint of the integration interval.</description><identifier>ISSN: 2090-8296</identifier><identifier>EISSN: 2090-4770</identifier><identifier>DOI: 10.20454/jmmnm.2016.1057</identifier><language>eng</language><ispartof>Journal of Modern Methods in Numerical Mathematics, 2016-07, Vol.7 (2), p.31</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Nguyen-Ba, Truong</creatorcontrib><creatorcontrib>Giordano, Thierry</creatorcontrib><title>On variable step highly stable 4-stage Hermite-Birkhoff solvers for stiff ODEs</title><title>Journal of Modern Methods in Numerical Mathematics</title><description>Variable-step (VS) \(4\)-stage \(k\)-step Hermite--Birkhoff (HB) methods of order \(p=(k+1)\), denoted by HB\((p)\), are constructed as a combination of linear \(k\)-step methods of order \((p-2)\) and a two-step diagonally implicit \(4\)-stage Runge--Kutta method of order 3 (TSDIRK3) for solving stiff ordinary differential equations. The main reason for considering this class of formulae is to obtain a set of \(k\)-step methods which are highly stable and are suitable for the integration of stiff differential systems whose Jacobians have some large eigenvalues lying close to the imaginary axis. The approach, described in the present paper, allows us to develop \(L\)-stable \(k\)-step methods of order up to 7 and \(L(\alpha)\)-stable methods of order up to 10 with \(\alpha &gt; 64^\circ\). Fast algorithms are developed for solving confluent Vandermonde-type systems of the new methods in O\((p^2)\) operations to obtain HB interpolation polynomials in terms of generalized Lagrange basis functions. The step sizes of these methods are controlled by a local error estimator. Selected HB(\(p\)) of order \(p\), \(p=4,5,\ldots,9\), compare favorably with existing Cash modified extended backward differentiation formulae, MEBDF(\(p\)), \(p=4,5,\ldots,8\) in solving problems often used to test highly stable stiff ODE solvers on the basis of CPU time, number of steps and error at the endpoint of the integration interval.</description><issn>2090-8296</issn><issn>2090-4770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqdjssOgjAQRRujiUbZu-wPoAMWkK2vuJKN-wZNC0UqZoaQ8PcW4hc4m3tycyc5jK0D2IQgIrGtrH1bx0G8CSBKJmwRQgq-SBKY_ngfpvGceUQVuEuiMNqLBbtlb97laPJHrTi16sNLU5R173ishO-gUPyq0JpW-QeDr7LRmlNTdwqJ6wbd1rgmO51pxWY6r0l5v1wyuJzvx6v_xIYIlZYfNDbHXgYgR3U5qstBXQ7quz9evrsPTWI</recordid><startdate>20160727</startdate><enddate>20160727</enddate><creator>Nguyen-Ba, Truong</creator><creator>Giordano, Thierry</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160727</creationdate><title>On variable step highly stable 4-stage Hermite-Birkhoff solvers for stiff ODEs</title><author>Nguyen-Ba, Truong ; Giordano, Thierry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_20454_jmmnm_2016_10573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen-Ba, Truong</creatorcontrib><creatorcontrib>Giordano, Thierry</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Modern Methods in Numerical Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen-Ba, Truong</au><au>Giordano, Thierry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On variable step highly stable 4-stage Hermite-Birkhoff solvers for stiff ODEs</atitle><jtitle>Journal of Modern Methods in Numerical Mathematics</jtitle><date>2016-07-27</date><risdate>2016</risdate><volume>7</volume><issue>2</issue><spage>31</spage><pages>31-</pages><issn>2090-8296</issn><eissn>2090-4770</eissn><abstract>Variable-step (VS) \(4\)-stage \(k\)-step Hermite--Birkhoff (HB) methods of order \(p=(k+1)\), denoted by HB\((p)\), are constructed as a combination of linear \(k\)-step methods of order \((p-2)\) and a two-step diagonally implicit \(4\)-stage Runge--Kutta method of order 3 (TSDIRK3) for solving stiff ordinary differential equations. The main reason for considering this class of formulae is to obtain a set of \(k\)-step methods which are highly stable and are suitable for the integration of stiff differential systems whose Jacobians have some large eigenvalues lying close to the imaginary axis. The approach, described in the present paper, allows us to develop \(L\)-stable \(k\)-step methods of order up to 7 and \(L(\alpha)\)-stable methods of order up to 10 with \(\alpha &gt; 64^\circ\). Fast algorithms are developed for solving confluent Vandermonde-type systems of the new methods in O\((p^2)\) operations to obtain HB interpolation polynomials in terms of generalized Lagrange basis functions. The step sizes of these methods are controlled by a local error estimator. Selected HB(\(p\)) of order \(p\), \(p=4,5,\ldots,9\), compare favorably with existing Cash modified extended backward differentiation formulae, MEBDF(\(p\)), \(p=4,5,\ldots,8\) in solving problems often used to test highly stable stiff ODE solvers on the basis of CPU time, number of steps and error at the endpoint of the integration interval.</abstract><doi>10.20454/jmmnm.2016.1057</doi></addata></record>
fulltext fulltext
identifier ISSN: 2090-8296
ispartof Journal of Modern Methods in Numerical Mathematics, 2016-07, Vol.7 (2), p.31
issn 2090-8296
2090-4770
language eng
recordid cdi_crossref_primary_10_20454_jmmnm_2016_1057
source EZB-FREE-00999 freely available EZB journals
title On variable step highly stable 4-stage Hermite-Birkhoff solvers for stiff ODEs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A59%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20variable%20step%20highly%20stable%204-stage%20Hermite-Birkhoff%20solvers%20for%20stiff%20ODEs&rft.jtitle=Journal%20of%20Modern%20Methods%20in%20Numerical%20Mathematics&rft.au=Nguyen-Ba,%20Truong&rft.date=2016-07-27&rft.volume=7&rft.issue=2&rft.spage=31&rft.pages=31-&rft.issn=2090-8296&rft.eissn=2090-4770&rft_id=info:doi/10.20454/jmmnm.2016.1057&rft_dat=%3Ccrossref%3E10_20454_jmmnm_2016_1057%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true