Gestion Des Donnees Manquantes Dans Les Bases De Donnees En Sciences Sociales : Algorithme Nipals Ou Imputation Multiple?

The main objective of this paper is to assess the robustness of imputation methods to fill up the series of secondary data in social sciences. The methodology used, especially that of mean imputation, multiple imputation and NIPALS algorithm, is based on a simulation using observed data. Results sho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European Scientific Journal (Kocani) 2016-12, Vol.12 (35), p.390
Hauptverfasser: Aurélien, Njamen Kengdo Arsène, Steve, Kwatcho Kengdo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main objective of this paper is to assess the robustness of imputation methods to fill up the series of secondary data in social sciences. The methodology used, especially that of mean imputation, multiple imputation and NIPALS algorithm, is based on a simulation using observed data. Results show a close similarity between the observed data and the data obtained by multiple imputation, mean imputation and NIPALS algorithm. The results also suggest that multiple imputation provides values substantially similar to observed data.
ISSN:1857-7881
1857-7431
DOI:10.19044/esj.2016.v12n35p390