Using SiZer to detect thresholds in ecological data

Ecological systems can change substantially in response to small shifts in environmental conditions. Such changes are characterized by a non‐linear relationship between the value of the response variable and one or more explanatory variables. Documenting the magnitude of change and the environment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in ecology and the environment 2009-05, Vol.7 (4), p.190-195
Hauptverfasser: Sonderegger, Derek L, Haonan Wang, William H Clements, Barry R Noon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 195
container_issue 4
container_start_page 190
container_title Frontiers in ecology and the environment
container_volume 7
creator Sonderegger, Derek L
Haonan Wang
William H Clements
Barry R Noon
description Ecological systems can change substantially in response to small shifts in environmental conditions. Such changes are characterized by a non‐linear relationship between the value of the response variable and one or more explanatory variables. Documenting the magnitude of change and the environmental conditions that give rise to these threshold responses is important for both the scientific community and the agencies charged with ecosystem management. A threshold is defined as a substantial change in a response variable, given a marginal change in environmental conditions. Here, we demonstrate the usefulness of a derivative‐based method for detecting ecological thresholds along a single explanatory variable. The “significant zero crossings” (SiZer) approach uses a non‐parametric method to approximate the response function and its derivatives and then examines how those functions change across the range of the explanatory variable. SiZer makes fewer assumptions than conventional threshold models and explores a full range of smoothing functions. We believe SiZer is a useful technique for the exploratory analysis of many ecological datasets.
doi_str_mv 10.1890/070179
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1890_070179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25595115</jstor_id><sourcerecordid>25595115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2400-28a5bd785bfa0dc4adafc6bf491255a5ef509f034b54a69d2ad17b58c86b5afe3</originalsourceid><addsrcrecordid>eNp1j01Lw0AQhhdRsFb9B-KevEVnv5LsUUqrQsFD7cXLMtmPdktsZDcg_femRL15moH3eYZ5CblmcM9qDQ9QAav0CZkwJaHQAvTp7861OicXOe8AuOBKTIhY57jf0FV894n2HXW-97an_Tb5vO1al2ncU2-7tttEiy112OMlOQvYZn_1M6dkvZi_zZ6L5evTy-xxWVguAQpeo2pcVasmIDgr0WGwZROkZlwpVD4o0AGEbJTEUjuOjlWNqm1dNgqDF1NyN961qcs5-WA-U_zAdDAMzLGqGasOIIzgV2z94R_KLOZzDqAryTQMys2o7HLfpT9leEwrxtSQ3455wM7gJsVs1isOrARgWmhdim-NV2X-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using SiZer to detect thresholds in ecological data</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sonderegger, Derek L ; Haonan Wang ; William H Clements ; Barry R Noon</creator><creatorcontrib>Sonderegger, Derek L ; Haonan Wang ; William H Clements ; Barry R Noon</creatorcontrib><description>Ecological systems can change substantially in response to small shifts in environmental conditions. Such changes are characterized by a non‐linear relationship between the value of the response variable and one or more explanatory variables. Documenting the magnitude of change and the environmental conditions that give rise to these threshold responses is important for both the scientific community and the agencies charged with ecosystem management. A threshold is defined as a substantial change in a response variable, given a marginal change in environmental conditions. Here, we demonstrate the usefulness of a derivative‐based method for detecting ecological thresholds along a single explanatory variable. The “significant zero crossings” (SiZer) approach uses a non‐parametric method to approximate the response function and its derivatives and then examines how those functions change across the range of the explanatory variable. SiZer makes fewer assumptions than conventional threshold models and explores a full range of smoothing functions. We believe SiZer is a useful technique for the exploratory analysis of many ecological datasets.</description><identifier>ISSN: 1540-9295</identifier><identifier>EISSN: 1540-9309</identifier><identifier>DOI: 10.1890/070179</identifier><language>eng</language><publisher>Ecological Society of America</publisher><subject>data collection ; Data smoothing ; Ecological modeling ; ecosystem management ; Ecosystems ; environmental factors ; Freshwater ecology ; Human ecology ; Marine ecology ; Modeling ; Polynomials ; Project management ; Research Communications ; Synecology</subject><ispartof>Frontiers in ecology and the environment, 2009-05, Vol.7 (4), p.190-195</ispartof><rights>Copyright 2009 The Ecological Society of America</rights><rights>The Ecological Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2400-28a5bd785bfa0dc4adafc6bf491255a5ef509f034b54a69d2ad17b58c86b5afe3</citedby><cites>FETCH-LOGICAL-c2400-28a5bd785bfa0dc4adafc6bf491255a5ef509f034b54a69d2ad17b58c86b5afe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25595115$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25595115$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids></links><search><creatorcontrib>Sonderegger, Derek L</creatorcontrib><creatorcontrib>Haonan Wang</creatorcontrib><creatorcontrib>William H Clements</creatorcontrib><creatorcontrib>Barry R Noon</creatorcontrib><title>Using SiZer to detect thresholds in ecological data</title><title>Frontiers in ecology and the environment</title><description>Ecological systems can change substantially in response to small shifts in environmental conditions. Such changes are characterized by a non‐linear relationship between the value of the response variable and one or more explanatory variables. Documenting the magnitude of change and the environmental conditions that give rise to these threshold responses is important for both the scientific community and the agencies charged with ecosystem management. A threshold is defined as a substantial change in a response variable, given a marginal change in environmental conditions. Here, we demonstrate the usefulness of a derivative‐based method for detecting ecological thresholds along a single explanatory variable. The “significant zero crossings” (SiZer) approach uses a non‐parametric method to approximate the response function and its derivatives and then examines how those functions change across the range of the explanatory variable. SiZer makes fewer assumptions than conventional threshold models and explores a full range of smoothing functions. We believe SiZer is a useful technique for the exploratory analysis of many ecological datasets.</description><subject>data collection</subject><subject>Data smoothing</subject><subject>Ecological modeling</subject><subject>ecosystem management</subject><subject>Ecosystems</subject><subject>environmental factors</subject><subject>Freshwater ecology</subject><subject>Human ecology</subject><subject>Marine ecology</subject><subject>Modeling</subject><subject>Polynomials</subject><subject>Project management</subject><subject>Research Communications</subject><subject>Synecology</subject><issn>1540-9295</issn><issn>1540-9309</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1j01Lw0AQhhdRsFb9B-KevEVnv5LsUUqrQsFD7cXLMtmPdktsZDcg_femRL15moH3eYZ5CblmcM9qDQ9QAav0CZkwJaHQAvTp7861OicXOe8AuOBKTIhY57jf0FV894n2HXW-97an_Tb5vO1al2ncU2-7tttEiy112OMlOQvYZn_1M6dkvZi_zZ6L5evTy-xxWVguAQpeo2pcVasmIDgr0WGwZROkZlwpVD4o0AGEbJTEUjuOjlWNqm1dNgqDF1NyN961qcs5-WA-U_zAdDAMzLGqGasOIIzgV2z94R_KLOZzDqAryTQMys2o7HLfpT9leEwrxtSQ3455wM7gJsVs1isOrARgWmhdim-NV2X-</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Sonderegger, Derek L</creator><creator>Haonan Wang</creator><creator>William H Clements</creator><creator>Barry R Noon</creator><general>Ecological Society of America</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200905</creationdate><title>Using SiZer to detect thresholds in ecological data</title><author>Sonderegger, Derek L ; Haonan Wang ; William H Clements ; Barry R Noon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2400-28a5bd785bfa0dc4adafc6bf491255a5ef509f034b54a69d2ad17b58c86b5afe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>data collection</topic><topic>Data smoothing</topic><topic>Ecological modeling</topic><topic>ecosystem management</topic><topic>Ecosystems</topic><topic>environmental factors</topic><topic>Freshwater ecology</topic><topic>Human ecology</topic><topic>Marine ecology</topic><topic>Modeling</topic><topic>Polynomials</topic><topic>Project management</topic><topic>Research Communications</topic><topic>Synecology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sonderegger, Derek L</creatorcontrib><creatorcontrib>Haonan Wang</creatorcontrib><creatorcontrib>William H Clements</creatorcontrib><creatorcontrib>Barry R Noon</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><jtitle>Frontiers in ecology and the environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sonderegger, Derek L</au><au>Haonan Wang</au><au>William H Clements</au><au>Barry R Noon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using SiZer to detect thresholds in ecological data</atitle><jtitle>Frontiers in ecology and the environment</jtitle><date>2009-05</date><risdate>2009</risdate><volume>7</volume><issue>4</issue><spage>190</spage><epage>195</epage><pages>190-195</pages><issn>1540-9295</issn><eissn>1540-9309</eissn><abstract>Ecological systems can change substantially in response to small shifts in environmental conditions. Such changes are characterized by a non‐linear relationship between the value of the response variable and one or more explanatory variables. Documenting the magnitude of change and the environmental conditions that give rise to these threshold responses is important for both the scientific community and the agencies charged with ecosystem management. A threshold is defined as a substantial change in a response variable, given a marginal change in environmental conditions. Here, we demonstrate the usefulness of a derivative‐based method for detecting ecological thresholds along a single explanatory variable. The “significant zero crossings” (SiZer) approach uses a non‐parametric method to approximate the response function and its derivatives and then examines how those functions change across the range of the explanatory variable. SiZer makes fewer assumptions than conventional threshold models and explores a full range of smoothing functions. We believe SiZer is a useful technique for the exploratory analysis of many ecological datasets.</abstract><pub>Ecological Society of America</pub><doi>10.1890/070179</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1540-9295
ispartof Frontiers in ecology and the environment, 2009-05, Vol.7 (4), p.190-195
issn 1540-9295
1540-9309
language eng
recordid cdi_crossref_primary_10_1890_070179
source Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete
subjects data collection
Data smoothing
Ecological modeling
ecosystem management
Ecosystems
environmental factors
Freshwater ecology
Human ecology
Marine ecology
Modeling
Polynomials
Project management
Research Communications
Synecology
title Using SiZer to detect thresholds in ecological data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A10%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20SiZer%20to%20detect%20thresholds%20in%20ecological%20data&rft.jtitle=Frontiers%20in%20ecology%20and%20the%20environment&rft.au=Sonderegger,%20Derek%20L&rft.date=2009-05&rft.volume=7&rft.issue=4&rft.spage=190&rft.epage=195&rft.pages=190-195&rft.issn=1540-9295&rft.eissn=1540-9309&rft_id=info:doi/10.1890/070179&rft_dat=%3Cjstor_cross%3E25595115%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=25595115&rfr_iscdi=true