DoubleML : An Object-Oriented Implementation of Double Machine Learning in R
The R package DoubleML implements the double/debiased machine learning framework of Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018). It provides functionalities to estimate parameters in causal models based on machine learning methods. The double machine learning framewor...
Gespeichert in:
Veröffentlicht in: | Journal of statistical software 2024-02, Vol.108 (3) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Journal of statistical software |
container_volume | 108 |
creator | Bach, Philipp Kurz, Malte S. Chernozhukov, Victor Spindler, Martin Klaassen, Sven |
description | The R package DoubleML implements the double/debiased machine learning framework of Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018). It provides functionalities to estimate parameters in causal models based on machine learning methods. The double machine learning framework consists of three key ingredients: Neyman orthogonality, high-quality machine learning estimation and sample splitting. Estimation of nuisance components can be performed by various state-of-the-art machine learning methods that are available in the mlr3 ecosystem. DoubleML makes it possible to perform inference in a variety of causal models, including partially linear and interactive regression models and their extensions to instrumental variable estimation. The object-oriented implementation of DoubleML enables a high flexibility for the model specification and makes it easily extendable. This paper serves as an introduction to the double machine learning framework and the R package DoubleML. In reproducible code examples with simulated and real data sets, we demonstrate how DoubleML users can perform valid inference based on machine learning methods. |
doi_str_mv | 10.18637/jss.v108.i03 |
format | Article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_18637_jss_v108_i03</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5a3d9843bb4742e3906a855b95948b6f</doaj_id><sourcerecordid>oai_doaj_org_article_5a3d9843bb4742e3906a855b95948b6f</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-9d4c9a94d73a4d326c7cd69f9d0baf5d3a1201eb4a89c0e790cfd59ba5c8a7da3</originalsourceid><addsrcrecordid>eNpNkEtLw0AYRQdRsD6W7ucPpE4yb3elvgopBdH18M0jdUI6KZMo-O-NrYire7lczuIgdFOSeakElbftMMw_S6LmkdATNCs5U4UUgpz-6-foYhhaQirCNJ-h-r7_sF1Y1_gOLxLe2Da4sdjkGNIYPF7t9l3YTR3G2CfcN_j4x2tw7zEFXAfIKaYtjgm_XKGzBrohXP_mJXp7fHhdPhf15mm1XNSFq7geC-2Z06CZlxSYp5Vw0nmhG-2JhYZ7CmVFymAZKO1IkJq4xnNtgTsF0gO9RKsj1_fQmn2OO8hfpodoDkOftwbyGF0XDAfqtWLUWiZZFagmAhTnVnPNlBXNxCqOLJf7Ycih-eOVxBy0mkmr-dFqJq30G4uRa3M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DoubleML : An Object-Oriented Implementation of Double Machine Learning in R</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bach, Philipp ; Kurz, Malte S. ; Chernozhukov, Victor ; Spindler, Martin ; Klaassen, Sven</creator><creatorcontrib>Bach, Philipp ; Kurz, Malte S. ; Chernozhukov, Victor ; Spindler, Martin ; Klaassen, Sven</creatorcontrib><description>The R package DoubleML implements the double/debiased machine learning framework of Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018). It provides functionalities to estimate parameters in causal models based on machine learning methods. The double machine learning framework consists of three key ingredients: Neyman orthogonality, high-quality machine learning estimation and sample splitting. Estimation of nuisance components can be performed by various state-of-the-art machine learning methods that are available in the mlr3 ecosystem. DoubleML makes it possible to perform inference in a variety of causal models, including partially linear and interactive regression models and their extensions to instrumental variable estimation. The object-oriented implementation of DoubleML enables a high flexibility for the model specification and makes it easily extendable. This paper serves as an introduction to the double machine learning framework and the R package DoubleML. In reproducible code examples with simulated and real data sets, we demonstrate how DoubleML users can perform valid inference based on machine learning methods.</description><identifier>ISSN: 1548-7660</identifier><identifier>EISSN: 1548-7660</identifier><identifier>DOI: 10.18637/jss.v108.i03</identifier><language>eng</language><publisher>Foundation for Open Access Statistics</publisher><subject>Causal Inference ; Causal Machine Learning ; Machine Learning ; mlr3 ; Object Orientation</subject><ispartof>Journal of statistical software, 2024-02, Vol.108 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bach, Philipp</creatorcontrib><creatorcontrib>Kurz, Malte S.</creatorcontrib><creatorcontrib>Chernozhukov, Victor</creatorcontrib><creatorcontrib>Spindler, Martin</creatorcontrib><creatorcontrib>Klaassen, Sven</creatorcontrib><title>DoubleML : An Object-Oriented Implementation of Double Machine Learning in R</title><title>Journal of statistical software</title><description>The R package DoubleML implements the double/debiased machine learning framework of Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018). It provides functionalities to estimate parameters in causal models based on machine learning methods. The double machine learning framework consists of three key ingredients: Neyman orthogonality, high-quality machine learning estimation and sample splitting. Estimation of nuisance components can be performed by various state-of-the-art machine learning methods that are available in the mlr3 ecosystem. DoubleML makes it possible to perform inference in a variety of causal models, including partially linear and interactive regression models and their extensions to instrumental variable estimation. The object-oriented implementation of DoubleML enables a high flexibility for the model specification and makes it easily extendable. This paper serves as an introduction to the double machine learning framework and the R package DoubleML. In reproducible code examples with simulated and real data sets, we demonstrate how DoubleML users can perform valid inference based on machine learning methods.</description><subject>Causal Inference</subject><subject>Causal Machine Learning</subject><subject>Machine Learning</subject><subject>mlr3</subject><subject>Object Orientation</subject><issn>1548-7660</issn><issn>1548-7660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkEtLw0AYRQdRsD6W7ucPpE4yb3elvgopBdH18M0jdUI6KZMo-O-NrYire7lczuIgdFOSeakElbftMMw_S6LmkdATNCs5U4UUgpz-6-foYhhaQirCNJ-h-r7_sF1Y1_gOLxLe2Da4sdjkGNIYPF7t9l3YTR3G2CfcN_j4x2tw7zEFXAfIKaYtjgm_XKGzBrohXP_mJXp7fHhdPhf15mm1XNSFq7geC-2Z06CZlxSYp5Vw0nmhG-2JhYZ7CmVFymAZKO1IkJq4xnNtgTsF0gO9RKsj1_fQmn2OO8hfpodoDkOftwbyGF0XDAfqtWLUWiZZFagmAhTnVnPNlBXNxCqOLJf7Ycih-eOVxBy0mkmr-dFqJq30G4uRa3M</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Bach, Philipp</creator><creator>Kurz, Malte S.</creator><creator>Chernozhukov, Victor</creator><creator>Spindler, Martin</creator><creator>Klaassen, Sven</creator><general>Foundation for Open Access Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20240201</creationdate><title>DoubleML : An Object-Oriented Implementation of Double Machine Learning in R</title><author>Bach, Philipp ; Kurz, Malte S. ; Chernozhukov, Victor ; Spindler, Martin ; Klaassen, Sven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-9d4c9a94d73a4d326c7cd69f9d0baf5d3a1201eb4a89c0e790cfd59ba5c8a7da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Causal Inference</topic><topic>Causal Machine Learning</topic><topic>Machine Learning</topic><topic>mlr3</topic><topic>Object Orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bach, Philipp</creatorcontrib><creatorcontrib>Kurz, Malte S.</creatorcontrib><creatorcontrib>Chernozhukov, Victor</creatorcontrib><creatorcontrib>Spindler, Martin</creatorcontrib><creatorcontrib>Klaassen, Sven</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of statistical software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bach, Philipp</au><au>Kurz, Malte S.</au><au>Chernozhukov, Victor</au><au>Spindler, Martin</au><au>Klaassen, Sven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DoubleML : An Object-Oriented Implementation of Double Machine Learning in R</atitle><jtitle>Journal of statistical software</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>108</volume><issue>3</issue><issn>1548-7660</issn><eissn>1548-7660</eissn><abstract>The R package DoubleML implements the double/debiased machine learning framework of Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018). It provides functionalities to estimate parameters in causal models based on machine learning methods. The double machine learning framework consists of three key ingredients: Neyman orthogonality, high-quality machine learning estimation and sample splitting. Estimation of nuisance components can be performed by various state-of-the-art machine learning methods that are available in the mlr3 ecosystem. DoubleML makes it possible to perform inference in a variety of causal models, including partially linear and interactive regression models and their extensions to instrumental variable estimation. The object-oriented implementation of DoubleML enables a high flexibility for the model specification and makes it easily extendable. This paper serves as an introduction to the double machine learning framework and the R package DoubleML. In reproducible code examples with simulated and real data sets, we demonstrate how DoubleML users can perform valid inference based on machine learning methods.</abstract><pub>Foundation for Open Access Statistics</pub><doi>10.18637/jss.v108.i03</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7660 |
ispartof | Journal of statistical software, 2024-02, Vol.108 (3) |
issn | 1548-7660 1548-7660 |
language | eng |
recordid | cdi_crossref_primary_10_18637_jss_v108_i03 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Causal Inference Causal Machine Learning Machine Learning mlr3 Object Orientation |
title | DoubleML : An Object-Oriented Implementation of Double Machine Learning in R |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A23%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DoubleML%20:%20An%20Object-Oriented%20Implementation%20of%20Double%20Machine%20Learning%20in%20R&rft.jtitle=Journal%20of%20statistical%20software&rft.au=Bach,%20Philipp&rft.date=2024-02-01&rft.volume=108&rft.issue=3&rft.issn=1548-7660&rft.eissn=1548-7660&rft_id=info:doi/10.18637/jss.v108.i03&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_5a3d9843bb4742e3906a855b95948b6f%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_5a3d9843bb4742e3906a855b95948b6f&rfr_iscdi=true |