DoubleML : An Object-Oriented Implementation of Double Machine Learning in R

The R package DoubleML implements the double/debiased machine learning framework of Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018). It provides functionalities to estimate parameters in causal models based on machine learning methods. The double machine learning framewor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical software 2024-02, Vol.108 (3)
Hauptverfasser: Bach, Philipp, Kurz, Malte S., Chernozhukov, Victor, Spindler, Martin, Klaassen, Sven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of statistical software
container_volume 108
creator Bach, Philipp
Kurz, Malte S.
Chernozhukov, Victor
Spindler, Martin
Klaassen, Sven
description The R package DoubleML implements the double/debiased machine learning framework of Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018). It provides functionalities to estimate parameters in causal models based on machine learning methods. The double machine learning framework consists of three key ingredients: Neyman orthogonality, high-quality machine learning estimation and sample splitting. Estimation of nuisance components can be performed by various state-of-the-art machine learning methods that are available in the mlr3 ecosystem. DoubleML makes it possible to perform inference in a variety of causal models, including partially linear and interactive regression models and their extensions to instrumental variable estimation. The object-oriented implementation of DoubleML enables a high flexibility for the model specification and makes it easily extendable. This paper serves as an introduction to the double machine learning framework and the R package DoubleML. In reproducible code examples with simulated and real data sets, we demonstrate how DoubleML users can perform valid inference based on machine learning methods.
doi_str_mv 10.18637/jss.v108.i03
format Article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_18637_jss_v108_i03</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5a3d9843bb4742e3906a855b95948b6f</doaj_id><sourcerecordid>oai_doaj_org_article_5a3d9843bb4742e3906a855b95948b6f</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-9d4c9a94d73a4d326c7cd69f9d0baf5d3a1201eb4a89c0e790cfd59ba5c8a7da3</originalsourceid><addsrcrecordid>eNpNkEtLw0AYRQdRsD6W7ucPpE4yb3elvgopBdH18M0jdUI6KZMo-O-NrYire7lczuIgdFOSeakElbftMMw_S6LmkdATNCs5U4UUgpz-6-foYhhaQirCNJ-h-r7_sF1Y1_gOLxLe2Da4sdjkGNIYPF7t9l3YTR3G2CfcN_j4x2tw7zEFXAfIKaYtjgm_XKGzBrohXP_mJXp7fHhdPhf15mm1XNSFq7geC-2Z06CZlxSYp5Vw0nmhG-2JhYZ7CmVFymAZKO1IkJq4xnNtgTsF0gO9RKsj1_fQmn2OO8hfpodoDkOftwbyGF0XDAfqtWLUWiZZFagmAhTnVnPNlBXNxCqOLJf7Ycih-eOVxBy0mkmr-dFqJq30G4uRa3M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DoubleML : An Object-Oriented Implementation of Double Machine Learning in R</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bach, Philipp ; Kurz, Malte S. ; Chernozhukov, Victor ; Spindler, Martin ; Klaassen, Sven</creator><creatorcontrib>Bach, Philipp ; Kurz, Malte S. ; Chernozhukov, Victor ; Spindler, Martin ; Klaassen, Sven</creatorcontrib><description>The R package DoubleML implements the double/debiased machine learning framework of Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018). It provides functionalities to estimate parameters in causal models based on machine learning methods. The double machine learning framework consists of three key ingredients: Neyman orthogonality, high-quality machine learning estimation and sample splitting. Estimation of nuisance components can be performed by various state-of-the-art machine learning methods that are available in the mlr3 ecosystem. DoubleML makes it possible to perform inference in a variety of causal models, including partially linear and interactive regression models and their extensions to instrumental variable estimation. The object-oriented implementation of DoubleML enables a high flexibility for the model specification and makes it easily extendable. This paper serves as an introduction to the double machine learning framework and the R package DoubleML. In reproducible code examples with simulated and real data sets, we demonstrate how DoubleML users can perform valid inference based on machine learning methods.</description><identifier>ISSN: 1548-7660</identifier><identifier>EISSN: 1548-7660</identifier><identifier>DOI: 10.18637/jss.v108.i03</identifier><language>eng</language><publisher>Foundation for Open Access Statistics</publisher><subject>Causal Inference ; Causal Machine Learning ; Machine Learning ; mlr3 ; Object Orientation</subject><ispartof>Journal of statistical software, 2024-02, Vol.108 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bach, Philipp</creatorcontrib><creatorcontrib>Kurz, Malte S.</creatorcontrib><creatorcontrib>Chernozhukov, Victor</creatorcontrib><creatorcontrib>Spindler, Martin</creatorcontrib><creatorcontrib>Klaassen, Sven</creatorcontrib><title>DoubleML : An Object-Oriented Implementation of Double Machine Learning in R</title><title>Journal of statistical software</title><description>The R package DoubleML implements the double/debiased machine learning framework of Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018). It provides functionalities to estimate parameters in causal models based on machine learning methods. The double machine learning framework consists of three key ingredients: Neyman orthogonality, high-quality machine learning estimation and sample splitting. Estimation of nuisance components can be performed by various state-of-the-art machine learning methods that are available in the mlr3 ecosystem. DoubleML makes it possible to perform inference in a variety of causal models, including partially linear and interactive regression models and their extensions to instrumental variable estimation. The object-oriented implementation of DoubleML enables a high flexibility for the model specification and makes it easily extendable. This paper serves as an introduction to the double machine learning framework and the R package DoubleML. In reproducible code examples with simulated and real data sets, we demonstrate how DoubleML users can perform valid inference based on machine learning methods.</description><subject>Causal Inference</subject><subject>Causal Machine Learning</subject><subject>Machine Learning</subject><subject>mlr3</subject><subject>Object Orientation</subject><issn>1548-7660</issn><issn>1548-7660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkEtLw0AYRQdRsD6W7ucPpE4yb3elvgopBdH18M0jdUI6KZMo-O-NrYire7lczuIgdFOSeakElbftMMw_S6LmkdATNCs5U4UUgpz-6-foYhhaQirCNJ-h-r7_sF1Y1_gOLxLe2Da4sdjkGNIYPF7t9l3YTR3G2CfcN_j4x2tw7zEFXAfIKaYtjgm_XKGzBrohXP_mJXp7fHhdPhf15mm1XNSFq7geC-2Z06CZlxSYp5Vw0nmhG-2JhYZ7CmVFymAZKO1IkJq4xnNtgTsF0gO9RKsj1_fQmn2OO8hfpodoDkOftwbyGF0XDAfqtWLUWiZZFagmAhTnVnPNlBXNxCqOLJf7Ycih-eOVxBy0mkmr-dFqJq30G4uRa3M</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Bach, Philipp</creator><creator>Kurz, Malte S.</creator><creator>Chernozhukov, Victor</creator><creator>Spindler, Martin</creator><creator>Klaassen, Sven</creator><general>Foundation for Open Access Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20240201</creationdate><title>DoubleML : An Object-Oriented Implementation of Double Machine Learning in R</title><author>Bach, Philipp ; Kurz, Malte S. ; Chernozhukov, Victor ; Spindler, Martin ; Klaassen, Sven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-9d4c9a94d73a4d326c7cd69f9d0baf5d3a1201eb4a89c0e790cfd59ba5c8a7da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Causal Inference</topic><topic>Causal Machine Learning</topic><topic>Machine Learning</topic><topic>mlr3</topic><topic>Object Orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bach, Philipp</creatorcontrib><creatorcontrib>Kurz, Malte S.</creatorcontrib><creatorcontrib>Chernozhukov, Victor</creatorcontrib><creatorcontrib>Spindler, Martin</creatorcontrib><creatorcontrib>Klaassen, Sven</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of statistical software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bach, Philipp</au><au>Kurz, Malte S.</au><au>Chernozhukov, Victor</au><au>Spindler, Martin</au><au>Klaassen, Sven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DoubleML : An Object-Oriented Implementation of Double Machine Learning in R</atitle><jtitle>Journal of statistical software</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>108</volume><issue>3</issue><issn>1548-7660</issn><eissn>1548-7660</eissn><abstract>The R package DoubleML implements the double/debiased machine learning framework of Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018). It provides functionalities to estimate parameters in causal models based on machine learning methods. The double machine learning framework consists of three key ingredients: Neyman orthogonality, high-quality machine learning estimation and sample splitting. Estimation of nuisance components can be performed by various state-of-the-art machine learning methods that are available in the mlr3 ecosystem. DoubleML makes it possible to perform inference in a variety of causal models, including partially linear and interactive regression models and their extensions to instrumental variable estimation. The object-oriented implementation of DoubleML enables a high flexibility for the model specification and makes it easily extendable. This paper serves as an introduction to the double machine learning framework and the R package DoubleML. In reproducible code examples with simulated and real data sets, we demonstrate how DoubleML users can perform valid inference based on machine learning methods.</abstract><pub>Foundation for Open Access Statistics</pub><doi>10.18637/jss.v108.i03</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1548-7660
ispartof Journal of statistical software, 2024-02, Vol.108 (3)
issn 1548-7660
1548-7660
language eng
recordid cdi_crossref_primary_10_18637_jss_v108_i03
source EZB-FREE-00999 freely available EZB journals
subjects Causal Inference
Causal Machine Learning
Machine Learning
mlr3
Object Orientation
title DoubleML : An Object-Oriented Implementation of Double Machine Learning in R
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A23%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DoubleML%20:%20An%20Object-Oriented%20Implementation%20of%20Double%20Machine%20Learning%20in%20R&rft.jtitle=Journal%20of%20statistical%20software&rft.au=Bach,%20Philipp&rft.date=2024-02-01&rft.volume=108&rft.issue=3&rft.issn=1548-7660&rft.eissn=1548-7660&rft_id=info:doi/10.18637/jss.v108.i03&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_5a3d9843bb4742e3906a855b95948b6f%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_5a3d9843bb4742e3906a855b95948b6f&rfr_iscdi=true