Computation and Calculus for Combinatorial Geometric Series and Binomial Identities and Expansions

Nowadays, the growing complexity of mathematical and computational modelling demands the simplicity of mathematical and computational equations for solving today’s scientific problems and challenges. This paper presents combinatorial geometric series, innovative binomial coefficients, combinatorial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Engineering and Exact Sciences 2022-09, Vol.8 (7), p.14648-1i
1. Verfasser: Annamalai, Chinnaraji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1i
container_issue 7
container_start_page 14648
container_title Journal of Engineering and Exact Sciences
container_volume 8
creator Annamalai, Chinnaraji
description Nowadays, the growing complexity of mathematical and computational modelling demands the simplicity of mathematical and computational equations for solving today’s scientific problems and challenges. This paper presents combinatorial geometric series, innovative binomial coefficients, combinatorial equations, binomial expansions, calculus with combinatorial geometric series, and innovative binomial theorems. Combinatorics involves integers, factorials, binomial coefficients, discrete mathematics, and theoretical computer science for finding solutions to the problems in computing and engineering science. The combinatorial geometric series with binomial expansions and its theorems refer to the methodological advances which are useful for researchers who are working in computational science. Computational science is a rapidly growing multi-and inter-disciplinary area where science, engineering, computation, mathematics, and collaboration use advance computing capabilities to understand and solve the most complex real-life problems.
doi_str_mv 10.18540/jcecvl8iss7pp14648-01i
format Article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_18540_jcecvl8iss7pp14648_01i</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3b2106c2a16646b3856c80a07b06fb79</doaj_id><sourcerecordid>oai_doaj_org_article_3b2106c2a16646b3856c80a07b06fb79</sourcerecordid><originalsourceid>FETCH-LOGICAL-c163i-882de4cc5e48db3fa05159f2a6eda75226808bd4e0fe5e0dfee6454f0284081a3</originalsourceid><addsrcrecordid>eNplkNFKwzAUhoMoOHTPYF-gepImaXapY87BwAv1upymJ5LRNiXpRN_euqkIXp3D_x8-OB9jVxyuuVESbnaW7FtrfErlMHCppcmB-xM2E0qUOYdSnf7Zz9k8pR0ACLMotCpmrF6GbtiPOPrQZ9g32RJbu2_3KXMhZlNZ-x7HED222ZpCR2P0Nnui6Ckd7u98H7qvdtNQP_rxJ1-9D9iniZou2ZnDNtH8e16wl_vV8_Ih3z6uN8vbbW65LnxujGhIWqtImqYuHILiauEEamqwVEJoA6ZuJIEjRdA4Ii2VdNMvEgzH4oJtjtwm4K4aou8wflQBfXUIQnytMI7etlQVteCgrUCutdR1YZS2BhDKGrSry8XEKo8sG0NKkdwvj0N1MF_9N19N5otPR-Z7-A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computation and Calculus for Combinatorial Geometric Series and Binomial Identities and Expansions</title><source>Alma/SFX Local Collection</source><creator>Annamalai, Chinnaraji</creator><creatorcontrib>Annamalai, Chinnaraji</creatorcontrib><description>Nowadays, the growing complexity of mathematical and computational modelling demands the simplicity of mathematical and computational equations for solving today’s scientific problems and challenges. This paper presents combinatorial geometric series, innovative binomial coefficients, combinatorial equations, binomial expansions, calculus with combinatorial geometric series, and innovative binomial theorems. Combinatorics involves integers, factorials, binomial coefficients, discrete mathematics, and theoretical computer science for finding solutions to the problems in computing and engineering science. The combinatorial geometric series with binomial expansions and its theorems refer to the methodological advances which are useful for researchers who are working in computational science. Computational science is a rapidly growing multi-and inter-disciplinary area where science, engineering, computation, mathematics, and collaboration use advance computing capabilities to understand and solve the most complex real-life problems.</description><identifier>ISSN: 2527-1075</identifier><identifier>EISSN: 2527-1075</identifier><identifier>DOI: 10.18540/jcecvl8iss7pp14648-01i</identifier><language>eng</language><publisher>Universidade Federal de Viçosa (UFV)</publisher><subject>computation, combinatorics, binomial coefficient</subject><ispartof>Journal of Engineering and Exact Sciences, 2022-09, Vol.8 (7), p.14648-1i</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0992-2584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Annamalai, Chinnaraji</creatorcontrib><title>Computation and Calculus for Combinatorial Geometric Series and Binomial Identities and Expansions</title><title>Journal of Engineering and Exact Sciences</title><description>Nowadays, the growing complexity of mathematical and computational modelling demands the simplicity of mathematical and computational equations for solving today’s scientific problems and challenges. This paper presents combinatorial geometric series, innovative binomial coefficients, combinatorial equations, binomial expansions, calculus with combinatorial geometric series, and innovative binomial theorems. Combinatorics involves integers, factorials, binomial coefficients, discrete mathematics, and theoretical computer science for finding solutions to the problems in computing and engineering science. The combinatorial geometric series with binomial expansions and its theorems refer to the methodological advances which are useful for researchers who are working in computational science. Computational science is a rapidly growing multi-and inter-disciplinary area where science, engineering, computation, mathematics, and collaboration use advance computing capabilities to understand and solve the most complex real-life problems.</description><subject>computation, combinatorics, binomial coefficient</subject><issn>2527-1075</issn><issn>2527-1075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkNFKwzAUhoMoOHTPYF-gepImaXapY87BwAv1upymJ5LRNiXpRN_euqkIXp3D_x8-OB9jVxyuuVESbnaW7FtrfErlMHCppcmB-xM2E0qUOYdSnf7Zz9k8pR0ACLMotCpmrF6GbtiPOPrQZ9g32RJbu2_3KXMhZlNZ-x7HED222ZpCR2P0Nnui6Ckd7u98H7qvdtNQP_rxJ1-9D9iniZou2ZnDNtH8e16wl_vV8_Ih3z6uN8vbbW65LnxujGhIWqtImqYuHILiauEEamqwVEJoA6ZuJIEjRdA4Ii2VdNMvEgzH4oJtjtwm4K4aou8wflQBfXUIQnytMI7etlQVteCgrUCutdR1YZS2BhDKGrSry8XEKo8sG0NKkdwvj0N1MF_9N19N5otPR-Z7-A</recordid><startdate>20220922</startdate><enddate>20220922</enddate><creator>Annamalai, Chinnaraji</creator><general>Universidade Federal de Viçosa (UFV)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0992-2584</orcidid></search><sort><creationdate>20220922</creationdate><title>Computation and Calculus for Combinatorial Geometric Series and Binomial Identities and Expansions</title><author>Annamalai, Chinnaraji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c163i-882de4cc5e48db3fa05159f2a6eda75226808bd4e0fe5e0dfee6454f0284081a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>computation, combinatorics, binomial coefficient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Annamalai, Chinnaraji</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Engineering and Exact Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Annamalai, Chinnaraji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation and Calculus for Combinatorial Geometric Series and Binomial Identities and Expansions</atitle><jtitle>Journal of Engineering and Exact Sciences</jtitle><date>2022-09-22</date><risdate>2022</risdate><volume>8</volume><issue>7</issue><spage>14648</spage><epage>1i</epage><pages>14648-1i</pages><issn>2527-1075</issn><eissn>2527-1075</eissn><abstract>Nowadays, the growing complexity of mathematical and computational modelling demands the simplicity of mathematical and computational equations for solving today’s scientific problems and challenges. This paper presents combinatorial geometric series, innovative binomial coefficients, combinatorial equations, binomial expansions, calculus with combinatorial geometric series, and innovative binomial theorems. Combinatorics involves integers, factorials, binomial coefficients, discrete mathematics, and theoretical computer science for finding solutions to the problems in computing and engineering science. The combinatorial geometric series with binomial expansions and its theorems refer to the methodological advances which are useful for researchers who are working in computational science. Computational science is a rapidly growing multi-and inter-disciplinary area where science, engineering, computation, mathematics, and collaboration use advance computing capabilities to understand and solve the most complex real-life problems.</abstract><pub>Universidade Federal de Viçosa (UFV)</pub><doi>10.18540/jcecvl8iss7pp14648-01i</doi><orcidid>https://orcid.org/0000-0002-0992-2584</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2527-1075
ispartof Journal of Engineering and Exact Sciences, 2022-09, Vol.8 (7), p.14648-1i
issn 2527-1075
2527-1075
language eng
recordid cdi_crossref_primary_10_18540_jcecvl8iss7pp14648_01i
source Alma/SFX Local Collection
subjects computation, combinatorics, binomial coefficient
title Computation and Calculus for Combinatorial Geometric Series and Binomial Identities and Expansions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A02%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20and%20Calculus%20for%20Combinatorial%20Geometric%20Series%20and%20Binomial%20Identities%20and%20Expansions&rft.jtitle=Journal%20of%20Engineering%20and%20Exact%20Sciences&rft.au=Annamalai,%20Chinnaraji&rft.date=2022-09-22&rft.volume=8&rft.issue=7&rft.spage=14648&rft.epage=1i&rft.pages=14648-1i&rft.issn=2527-1075&rft.eissn=2527-1075&rft_id=info:doi/10.18540/jcecvl8iss7pp14648-01i&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_3b2106c2a16646b3856c80a07b06fb79%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_3b2106c2a16646b3856c80a07b06fb79&rfr_iscdi=true