Computation and Calculus for Combinatorial Geometric Series and Binomial Identities and Expansions
Nowadays, the growing complexity of mathematical and computational modelling demands the simplicity of mathematical and computational equations for solving today’s scientific problems and challenges. This paper presents combinatorial geometric series, innovative binomial coefficients, combinatorial...
Gespeichert in:
Veröffentlicht in: | Journal of Engineering and Exact Sciences 2022-09, Vol.8 (7), p.14648-1i |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1i |
---|---|
container_issue | 7 |
container_start_page | 14648 |
container_title | Journal of Engineering and Exact Sciences |
container_volume | 8 |
creator | Annamalai, Chinnaraji |
description | Nowadays, the growing complexity of mathematical and computational modelling demands the simplicity of mathematical and computational equations for solving today’s scientific problems and challenges. This paper presents combinatorial geometric series, innovative binomial coefficients, combinatorial equations, binomial expansions, calculus with combinatorial geometric series, and innovative binomial theorems. Combinatorics involves integers, factorials, binomial coefficients, discrete mathematics, and theoretical computer science for finding solutions to the problems in computing and engineering science. The combinatorial geometric series with binomial expansions and its theorems refer to the methodological advances which are useful for researchers who are working in computational science. Computational science is a rapidly growing multi-and inter-disciplinary area where science, engineering, computation, mathematics, and collaboration use advance computing capabilities to understand and solve the most complex real-life problems. |
doi_str_mv | 10.18540/jcecvl8iss7pp14648-01i |
format | Article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_18540_jcecvl8iss7pp14648_01i</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3b2106c2a16646b3856c80a07b06fb79</doaj_id><sourcerecordid>oai_doaj_org_article_3b2106c2a16646b3856c80a07b06fb79</sourcerecordid><originalsourceid>FETCH-LOGICAL-c163i-882de4cc5e48db3fa05159f2a6eda75226808bd4e0fe5e0dfee6454f0284081a3</originalsourceid><addsrcrecordid>eNplkNFKwzAUhoMoOHTPYF-gepImaXapY87BwAv1upymJ5LRNiXpRN_euqkIXp3D_x8-OB9jVxyuuVESbnaW7FtrfErlMHCppcmB-xM2E0qUOYdSnf7Zz9k8pR0ACLMotCpmrF6GbtiPOPrQZ9g32RJbu2_3KXMhZlNZ-x7HED222ZpCR2P0Nnui6Ckd7u98H7qvdtNQP_rxJ1-9D9iniZou2ZnDNtH8e16wl_vV8_Ih3z6uN8vbbW65LnxujGhIWqtImqYuHILiauEEamqwVEJoA6ZuJIEjRdA4Ii2VdNMvEgzH4oJtjtwm4K4aou8wflQBfXUIQnytMI7etlQVteCgrUCutdR1YZS2BhDKGrSry8XEKo8sG0NKkdwvj0N1MF_9N19N5otPR-Z7-A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computation and Calculus for Combinatorial Geometric Series and Binomial Identities and Expansions</title><source>Alma/SFX Local Collection</source><creator>Annamalai, Chinnaraji</creator><creatorcontrib>Annamalai, Chinnaraji</creatorcontrib><description>Nowadays, the growing complexity of mathematical and computational modelling demands the simplicity of mathematical and computational equations for solving today’s scientific problems and challenges. This paper presents combinatorial geometric series, innovative binomial coefficients, combinatorial equations, binomial expansions, calculus with combinatorial geometric series, and innovative binomial theorems. Combinatorics involves integers, factorials, binomial coefficients, discrete mathematics, and theoretical computer science for finding solutions to the problems in computing and engineering science. The combinatorial geometric series with binomial expansions and its theorems refer to the methodological advances which are useful for researchers who are working in computational science. Computational science is a rapidly growing multi-and inter-disciplinary area where science, engineering, computation, mathematics, and collaboration use advance computing capabilities to understand and solve the most complex real-life problems.</description><identifier>ISSN: 2527-1075</identifier><identifier>EISSN: 2527-1075</identifier><identifier>DOI: 10.18540/jcecvl8iss7pp14648-01i</identifier><language>eng</language><publisher>Universidade Federal de Viçosa (UFV)</publisher><subject>computation, combinatorics, binomial coefficient</subject><ispartof>Journal of Engineering and Exact Sciences, 2022-09, Vol.8 (7), p.14648-1i</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0992-2584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Annamalai, Chinnaraji</creatorcontrib><title>Computation and Calculus for Combinatorial Geometric Series and Binomial Identities and Expansions</title><title>Journal of Engineering and Exact Sciences</title><description>Nowadays, the growing complexity of mathematical and computational modelling demands the simplicity of mathematical and computational equations for solving today’s scientific problems and challenges. This paper presents combinatorial geometric series, innovative binomial coefficients, combinatorial equations, binomial expansions, calculus with combinatorial geometric series, and innovative binomial theorems. Combinatorics involves integers, factorials, binomial coefficients, discrete mathematics, and theoretical computer science for finding solutions to the problems in computing and engineering science. The combinatorial geometric series with binomial expansions and its theorems refer to the methodological advances which are useful for researchers who are working in computational science. Computational science is a rapidly growing multi-and inter-disciplinary area where science, engineering, computation, mathematics, and collaboration use advance computing capabilities to understand and solve the most complex real-life problems.</description><subject>computation, combinatorics, binomial coefficient</subject><issn>2527-1075</issn><issn>2527-1075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkNFKwzAUhoMoOHTPYF-gepImaXapY87BwAv1upymJ5LRNiXpRN_euqkIXp3D_x8-OB9jVxyuuVESbnaW7FtrfErlMHCppcmB-xM2E0qUOYdSnf7Zz9k8pR0ACLMotCpmrF6GbtiPOPrQZ9g32RJbu2_3KXMhZlNZ-x7HED222ZpCR2P0Nnui6Ckd7u98H7qvdtNQP_rxJ1-9D9iniZou2ZnDNtH8e16wl_vV8_Ih3z6uN8vbbW65LnxujGhIWqtImqYuHILiauEEamqwVEJoA6ZuJIEjRdA4Ii2VdNMvEgzH4oJtjtwm4K4aou8wflQBfXUIQnytMI7etlQVteCgrUCutdR1YZS2BhDKGrSry8XEKo8sG0NKkdwvj0N1MF_9N19N5otPR-Z7-A</recordid><startdate>20220922</startdate><enddate>20220922</enddate><creator>Annamalai, Chinnaraji</creator><general>Universidade Federal de Viçosa (UFV)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0992-2584</orcidid></search><sort><creationdate>20220922</creationdate><title>Computation and Calculus for Combinatorial Geometric Series and Binomial Identities and Expansions</title><author>Annamalai, Chinnaraji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c163i-882de4cc5e48db3fa05159f2a6eda75226808bd4e0fe5e0dfee6454f0284081a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>computation, combinatorics, binomial coefficient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Annamalai, Chinnaraji</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Engineering and Exact Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Annamalai, Chinnaraji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation and Calculus for Combinatorial Geometric Series and Binomial Identities and Expansions</atitle><jtitle>Journal of Engineering and Exact Sciences</jtitle><date>2022-09-22</date><risdate>2022</risdate><volume>8</volume><issue>7</issue><spage>14648</spage><epage>1i</epage><pages>14648-1i</pages><issn>2527-1075</issn><eissn>2527-1075</eissn><abstract>Nowadays, the growing complexity of mathematical and computational modelling demands the simplicity of mathematical and computational equations for solving today’s scientific problems and challenges. This paper presents combinatorial geometric series, innovative binomial coefficients, combinatorial equations, binomial expansions, calculus with combinatorial geometric series, and innovative binomial theorems. Combinatorics involves integers, factorials, binomial coefficients, discrete mathematics, and theoretical computer science for finding solutions to the problems in computing and engineering science. The combinatorial geometric series with binomial expansions and its theorems refer to the methodological advances which are useful for researchers who are working in computational science. Computational science is a rapidly growing multi-and inter-disciplinary area where science, engineering, computation, mathematics, and collaboration use advance computing capabilities to understand and solve the most complex real-life problems.</abstract><pub>Universidade Federal de Viçosa (UFV)</pub><doi>10.18540/jcecvl8iss7pp14648-01i</doi><orcidid>https://orcid.org/0000-0002-0992-2584</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2527-1075 |
ispartof | Journal of Engineering and Exact Sciences, 2022-09, Vol.8 (7), p.14648-1i |
issn | 2527-1075 2527-1075 |
language | eng |
recordid | cdi_crossref_primary_10_18540_jcecvl8iss7pp14648_01i |
source | Alma/SFX Local Collection |
subjects | computation, combinatorics, binomial coefficient |
title | Computation and Calculus for Combinatorial Geometric Series and Binomial Identities and Expansions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A02%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20and%20Calculus%20for%20Combinatorial%20Geometric%20Series%20and%20Binomial%20Identities%20and%20Expansions&rft.jtitle=Journal%20of%20Engineering%20and%20Exact%20Sciences&rft.au=Annamalai,%20Chinnaraji&rft.date=2022-09-22&rft.volume=8&rft.issue=7&rft.spage=14648&rft.epage=1i&rft.pages=14648-1i&rft.issn=2527-1075&rft.eissn=2527-1075&rft_id=info:doi/10.18540/jcecvl8iss7pp14648-01i&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_3b2106c2a16646b3856c80a07b06fb79%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_3b2106c2a16646b3856c80a07b06fb79&rfr_iscdi=true |