ConvNet: 1D-Convolutional Neural Networks for Cardiac Arrhythmia Recognition Using ECG Signals

In healthcare, diagnostic tools of cardiac diseases are commonly known by the electrocardiogram (ECG) analysis. Atypical electrical activity can produce a cardiac arrhythmia. Various difficulties can be imposed to clinicians e.g., myocardial infarction arrhythmia via the non-stationarity and irregul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Traitement du signal 2021-12, Vol.38 (6), p.1737-1745
Hauptverfasser: Ben Slama, Amine, Sahli, Hanene, Maalmi, Ramzi, Trabelsi, Hedi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1745
container_issue 6
container_start_page 1737
container_title Traitement du signal
container_volume 38
creator Ben Slama, Amine
Sahli, Hanene
Maalmi, Ramzi
Trabelsi, Hedi
description In healthcare, diagnostic tools of cardiac diseases are commonly known by the electrocardiogram (ECG) analysis. Atypical electrical activity can produce a cardiac arrhythmia. Various difficulties can be imposed to clinicians e.g., myocardial infarction arrhythmia via the non-stationarity and irregularity heart beat signals. Through the assistance of computer-aided diagnosis methods, timely specification of arrhythmia diseases reduces the mortality rate of affected patients. In this study, a 1 Lead QRS complex -layer deep convolutional neural network is proposed for the recognition of arrhythmia datasets. By the use of this CNN model, we planned a complete structure of the classification architecture after a pre-processing stage counting the denoising and QRS complex signals detection procedure. The chief benefit of the new proposed methodology is that the automatically training the QRS complexes without requiring all original extracted ECG signals. The proposed model was trained on the increased ECG database and separated into five classes. Experimental results display that the established CNN method has improved performance when compared to the state-of-the-art studies.
doi_str_mv 10.18280/ts.380617
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_18280_ts_380617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_18280_ts_380617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-7176ed68d6688b22459bb786dec54765d787f921a2601746630c4f597a7202a03</originalsourceid><addsrcrecordid>eNotkDFPwzAUhD2ARFW68As8I6U8O8mzw1aFUpCqIgFdiRzHSQ1tjGwX1H9P2nLLd8udTkfIDYMpk1zCXQzTVAIycUFGIDBPAFhxRSYhfMKglGWI6Yh8lK7_WZl4T9lDcvRuu4_W9WpLV2bvT4i_zn8F2jpPS-UbqzSdeb85xM3OKvpqtOt6ewzRdbB9R-flgr7ZbugI1-SyHWAm_xyT9eP8vXxKli-L53K2TDRHERPBBJoGZYMoZc15lhd1LSQ2RufZML4RUrQFZ4ojMHFcDjpr80IowYErSMfk9tyrvQvBm7b69nan_KFiUJ0OqWKozoekf8qUVA0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ConvNet: 1D-Convolutional Neural Networks for Cardiac Arrhythmia Recognition Using ECG Signals</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ben Slama, Amine ; Sahli, Hanene ; Maalmi, Ramzi ; Trabelsi, Hedi</creator><creatorcontrib>Ben Slama, Amine ; Sahli, Hanene ; Maalmi, Ramzi ; Trabelsi, Hedi</creatorcontrib><description>In healthcare, diagnostic tools of cardiac diseases are commonly known by the electrocardiogram (ECG) analysis. Atypical electrical activity can produce a cardiac arrhythmia. Various difficulties can be imposed to clinicians e.g., myocardial infarction arrhythmia via the non-stationarity and irregularity heart beat signals. Through the assistance of computer-aided diagnosis methods, timely specification of arrhythmia diseases reduces the mortality rate of affected patients. In this study, a 1 Lead QRS complex -layer deep convolutional neural network is proposed for the recognition of arrhythmia datasets. By the use of this CNN model, we planned a complete structure of the classification architecture after a pre-processing stage counting the denoising and QRS complex signals detection procedure. The chief benefit of the new proposed methodology is that the automatically training the QRS complexes without requiring all original extracted ECG signals. The proposed model was trained on the increased ECG database and separated into five classes. Experimental results display that the established CNN method has improved performance when compared to the state-of-the-art studies.</description><identifier>ISSN: 0765-0019</identifier><identifier>DOI: 10.18280/ts.380617</identifier><language>eng</language><ispartof>Traitement du signal, 2021-12, Vol.38 (6), p.1737-1745</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-7176ed68d6688b22459bb786dec54765d787f921a2601746630c4f597a7202a03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ben Slama, Amine</creatorcontrib><creatorcontrib>Sahli, Hanene</creatorcontrib><creatorcontrib>Maalmi, Ramzi</creatorcontrib><creatorcontrib>Trabelsi, Hedi</creatorcontrib><title>ConvNet: 1D-Convolutional Neural Networks for Cardiac Arrhythmia Recognition Using ECG Signals</title><title>Traitement du signal</title><description>In healthcare, diagnostic tools of cardiac diseases are commonly known by the electrocardiogram (ECG) analysis. Atypical electrical activity can produce a cardiac arrhythmia. Various difficulties can be imposed to clinicians e.g., myocardial infarction arrhythmia via the non-stationarity and irregularity heart beat signals. Through the assistance of computer-aided diagnosis methods, timely specification of arrhythmia diseases reduces the mortality rate of affected patients. In this study, a 1 Lead QRS complex -layer deep convolutional neural network is proposed for the recognition of arrhythmia datasets. By the use of this CNN model, we planned a complete structure of the classification architecture after a pre-processing stage counting the denoising and QRS complex signals detection procedure. The chief benefit of the new proposed methodology is that the automatically training the QRS complexes without requiring all original extracted ECG signals. The proposed model was trained on the increased ECG database and separated into five classes. Experimental results display that the established CNN method has improved performance when compared to the state-of-the-art studies.</description><issn>0765-0019</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkDFPwzAUhD2ARFW68As8I6U8O8mzw1aFUpCqIgFdiRzHSQ1tjGwX1H9P2nLLd8udTkfIDYMpk1zCXQzTVAIycUFGIDBPAFhxRSYhfMKglGWI6Yh8lK7_WZl4T9lDcvRuu4_W9WpLV2bvT4i_zn8F2jpPS-UbqzSdeb85xM3OKvpqtOt6ewzRdbB9R-flgr7ZbugI1-SyHWAm_xyT9eP8vXxKli-L53K2TDRHERPBBJoGZYMoZc15lhd1LSQ2RufZML4RUrQFZ4ojMHFcDjpr80IowYErSMfk9tyrvQvBm7b69nan_KFiUJ0OqWKozoekf8qUVA0</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Ben Slama, Amine</creator><creator>Sahli, Hanene</creator><creator>Maalmi, Ramzi</creator><creator>Trabelsi, Hedi</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>ConvNet: 1D-Convolutional Neural Networks for Cardiac Arrhythmia Recognition Using ECG Signals</title><author>Ben Slama, Amine ; Sahli, Hanene ; Maalmi, Ramzi ; Trabelsi, Hedi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-7176ed68d6688b22459bb786dec54765d787f921a2601746630c4f597a7202a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben Slama, Amine</creatorcontrib><creatorcontrib>Sahli, Hanene</creatorcontrib><creatorcontrib>Maalmi, Ramzi</creatorcontrib><creatorcontrib>Trabelsi, Hedi</creatorcontrib><collection>CrossRef</collection><jtitle>Traitement du signal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben Slama, Amine</au><au>Sahli, Hanene</au><au>Maalmi, Ramzi</au><au>Trabelsi, Hedi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ConvNet: 1D-Convolutional Neural Networks for Cardiac Arrhythmia Recognition Using ECG Signals</atitle><jtitle>Traitement du signal</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>38</volume><issue>6</issue><spage>1737</spage><epage>1745</epage><pages>1737-1745</pages><issn>0765-0019</issn><abstract>In healthcare, diagnostic tools of cardiac diseases are commonly known by the electrocardiogram (ECG) analysis. Atypical electrical activity can produce a cardiac arrhythmia. Various difficulties can be imposed to clinicians e.g., myocardial infarction arrhythmia via the non-stationarity and irregularity heart beat signals. Through the assistance of computer-aided diagnosis methods, timely specification of arrhythmia diseases reduces the mortality rate of affected patients. In this study, a 1 Lead QRS complex -layer deep convolutional neural network is proposed for the recognition of arrhythmia datasets. By the use of this CNN model, we planned a complete structure of the classification architecture after a pre-processing stage counting the denoising and QRS complex signals detection procedure. The chief benefit of the new proposed methodology is that the automatically training the QRS complexes without requiring all original extracted ECG signals. The proposed model was trained on the increased ECG database and separated into five classes. Experimental results display that the established CNN method has improved performance when compared to the state-of-the-art studies.</abstract><doi>10.18280/ts.380617</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0765-0019
ispartof Traitement du signal, 2021-12, Vol.38 (6), p.1737-1745
issn 0765-0019
language eng
recordid cdi_crossref_primary_10_18280_ts_380617
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title ConvNet: 1D-Convolutional Neural Networks for Cardiac Arrhythmia Recognition Using ECG Signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A17%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ConvNet:%201D-Convolutional%20Neural%20Networks%20for%20Cardiac%20Arrhythmia%20Recognition%20Using%20ECG%20Signals&rft.jtitle=Traitement%20du%20signal&rft.au=Ben%20Slama,%20Amine&rft.date=2021-12-01&rft.volume=38&rft.issue=6&rft.spage=1737&rft.epage=1745&rft.pages=1737-1745&rft.issn=0765-0019&rft_id=info:doi/10.18280/ts.380617&rft_dat=%3Ccrossref%3E10_18280_ts_380617%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true