The Enhancement on Stress Levels Based on Physiological Signal and Self-Stress Assessment

The prolonged stress needs to be determined and controlled before it harms the physical and mental conditions. This research used questionnaire and physiological approaches in determine stress. EEG signal is an electrophysiological signal to analyze the signal features. The standard features used ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Traitement du signal 2021-10, Vol.38 (5), p.1439-1447
Hauptverfasser: Zahari, Zarith Liyana, Mustafa, Mahfuzah, Zain, Zaridah Mat, Abdubrani, Rafiuddin, Naim, Faradila
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1447
container_issue 5
container_start_page 1439
container_title Traitement du signal
container_volume 38
creator Zahari, Zarith Liyana
Mustafa, Mahfuzah
Zain, Zaridah Mat
Abdubrani, Rafiuddin
Naim, Faradila
description The prolonged stress needs to be determined and controlled before it harms the physical and mental conditions. This research used questionnaire and physiological approaches in determine stress. EEG signal is an electrophysiological signal to analyze the signal features. The standard features used are peak-to-peak values, mean, standard deviation and root means square (RMS). The unique features in this research are Matthew Correlation Coefficient Advanced (MCCA) and multimodal capabilities in the area of frequency and time-frequency analysis are proposed. In the frequency domain, Power Spectral Density (PSD) techniques were applied while Short Time Fourier Transform (STFT) and Continuous Wavelet Transform (CWT) were utilized to extract seven features based on time-frequency domain. Various methods applied from previous works are still limited by the stress indices. The merged works between quantities score and physiological measurements were enhanced the stress level from three-levels to six stress levels based on music application will be the second contribution. To validate the proposed method and enhance performance between electroencephalogram (EEG) signals and stress score, support vector machine (SVM), random forest (RF), K- nearest neighbor (KNN) classifier is needed. From the finding, RF gained the best performance average accuracy 85% ±10% in Ten-fold and K-fold techniques compared with SVM and KNN.
doi_str_mv 10.18280/ts.380519
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_18280_ts_380519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_18280_ts_380519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-8b31e459f84fba9fd33c7af9f9da20b65e8e766906eb621296a88cd3ded6c6803</originalsourceid><addsrcrecordid>eNotkE1Lw0AURQdRMNRu_AWzFlJnMsnLzLKW-gEBhdSFqzCZedNE0kTygtB_b2p7Nwcu3LO4jN1LsZI60eJxopXSIpPmikXSZDrOQOhrFokcslgIaW7ZkuhbzFEyBVAR-9o1yLd9Y3uHB-wnPvS8nEYk4gX-Ykf8yRL6U_3RHKkdumHfOtvxst33M2zveYldiC-jNdGMk-mO3QTbES4vXLDP5-1u8xoX7y9vm3URuySBKda1kphmJug01NYEr5TLbTDBeJuIGjLUmAMYAVhDIhMDVmvnlUcPDrRQC_Zw9rpxIBoxVD9je7DjsZKi-v-lmqg6_6L-ANPJVk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Enhancement on Stress Levels Based on Physiological Signal and Self-Stress Assessment</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zahari, Zarith Liyana ; Mustafa, Mahfuzah ; Zain, Zaridah Mat ; Abdubrani, Rafiuddin ; Naim, Faradila</creator><creatorcontrib>Zahari, Zarith Liyana ; Mustafa, Mahfuzah ; Zain, Zaridah Mat ; Abdubrani, Rafiuddin ; Naim, Faradila</creatorcontrib><description>The prolonged stress needs to be determined and controlled before it harms the physical and mental conditions. This research used questionnaire and physiological approaches in determine stress. EEG signal is an electrophysiological signal to analyze the signal features. The standard features used are peak-to-peak values, mean, standard deviation and root means square (RMS). The unique features in this research are Matthew Correlation Coefficient Advanced (MCCA) and multimodal capabilities in the area of frequency and time-frequency analysis are proposed. In the frequency domain, Power Spectral Density (PSD) techniques were applied while Short Time Fourier Transform (STFT) and Continuous Wavelet Transform (CWT) were utilized to extract seven features based on time-frequency domain. Various methods applied from previous works are still limited by the stress indices. The merged works between quantities score and physiological measurements were enhanced the stress level from three-levels to six stress levels based on music application will be the second contribution. To validate the proposed method and enhance performance between electroencephalogram (EEG) signals and stress score, support vector machine (SVM), random forest (RF), K- nearest neighbor (KNN) classifier is needed. From the finding, RF gained the best performance average accuracy 85% ±10% in Ten-fold and K-fold techniques compared with SVM and KNN.</description><identifier>ISSN: 0765-0019</identifier><identifier>EISSN: 1958-5608</identifier><identifier>DOI: 10.18280/ts.380519</identifier><language>eng</language><ispartof>Traitement du signal, 2021-10, Vol.38 (5), p.1439-1447</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zahari, Zarith Liyana</creatorcontrib><creatorcontrib>Mustafa, Mahfuzah</creatorcontrib><creatorcontrib>Zain, Zaridah Mat</creatorcontrib><creatorcontrib>Abdubrani, Rafiuddin</creatorcontrib><creatorcontrib>Naim, Faradila</creatorcontrib><title>The Enhancement on Stress Levels Based on Physiological Signal and Self-Stress Assessment</title><title>Traitement du signal</title><description>The prolonged stress needs to be determined and controlled before it harms the physical and mental conditions. This research used questionnaire and physiological approaches in determine stress. EEG signal is an electrophysiological signal to analyze the signal features. The standard features used are peak-to-peak values, mean, standard deviation and root means square (RMS). The unique features in this research are Matthew Correlation Coefficient Advanced (MCCA) and multimodal capabilities in the area of frequency and time-frequency analysis are proposed. In the frequency domain, Power Spectral Density (PSD) techniques were applied while Short Time Fourier Transform (STFT) and Continuous Wavelet Transform (CWT) were utilized to extract seven features based on time-frequency domain. Various methods applied from previous works are still limited by the stress indices. The merged works between quantities score and physiological measurements were enhanced the stress level from three-levels to six stress levels based on music application will be the second contribution. To validate the proposed method and enhance performance between electroencephalogram (EEG) signals and stress score, support vector machine (SVM), random forest (RF), K- nearest neighbor (KNN) classifier is needed. From the finding, RF gained the best performance average accuracy 85% ±10% in Ten-fold and K-fold techniques compared with SVM and KNN.</description><issn>0765-0019</issn><issn>1958-5608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkE1Lw0AURQdRMNRu_AWzFlJnMsnLzLKW-gEBhdSFqzCZedNE0kTygtB_b2p7Nwcu3LO4jN1LsZI60eJxopXSIpPmikXSZDrOQOhrFokcslgIaW7ZkuhbzFEyBVAR-9o1yLd9Y3uHB-wnPvS8nEYk4gX-Ykf8yRL6U_3RHKkdumHfOtvxst33M2zveYldiC-jNdGMk-mO3QTbES4vXLDP5-1u8xoX7y9vm3URuySBKda1kphmJug01NYEr5TLbTDBeJuIGjLUmAMYAVhDIhMDVmvnlUcPDrRQC_Zw9rpxIBoxVD9je7DjsZKi-v-lmqg6_6L-ANPJVk4</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Zahari, Zarith Liyana</creator><creator>Mustafa, Mahfuzah</creator><creator>Zain, Zaridah Mat</creator><creator>Abdubrani, Rafiuddin</creator><creator>Naim, Faradila</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211001</creationdate><title>The Enhancement on Stress Levels Based on Physiological Signal and Self-Stress Assessment</title><author>Zahari, Zarith Liyana ; Mustafa, Mahfuzah ; Zain, Zaridah Mat ; Abdubrani, Rafiuddin ; Naim, Faradila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-8b31e459f84fba9fd33c7af9f9da20b65e8e766906eb621296a88cd3ded6c6803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zahari, Zarith Liyana</creatorcontrib><creatorcontrib>Mustafa, Mahfuzah</creatorcontrib><creatorcontrib>Zain, Zaridah Mat</creatorcontrib><creatorcontrib>Abdubrani, Rafiuddin</creatorcontrib><creatorcontrib>Naim, Faradila</creatorcontrib><collection>CrossRef</collection><jtitle>Traitement du signal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zahari, Zarith Liyana</au><au>Mustafa, Mahfuzah</au><au>Zain, Zaridah Mat</au><au>Abdubrani, Rafiuddin</au><au>Naim, Faradila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Enhancement on Stress Levels Based on Physiological Signal and Self-Stress Assessment</atitle><jtitle>Traitement du signal</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>38</volume><issue>5</issue><spage>1439</spage><epage>1447</epage><pages>1439-1447</pages><issn>0765-0019</issn><eissn>1958-5608</eissn><abstract>The prolonged stress needs to be determined and controlled before it harms the physical and mental conditions. This research used questionnaire and physiological approaches in determine stress. EEG signal is an electrophysiological signal to analyze the signal features. The standard features used are peak-to-peak values, mean, standard deviation and root means square (RMS). The unique features in this research are Matthew Correlation Coefficient Advanced (MCCA) and multimodal capabilities in the area of frequency and time-frequency analysis are proposed. In the frequency domain, Power Spectral Density (PSD) techniques were applied while Short Time Fourier Transform (STFT) and Continuous Wavelet Transform (CWT) were utilized to extract seven features based on time-frequency domain. Various methods applied from previous works are still limited by the stress indices. The merged works between quantities score and physiological measurements were enhanced the stress level from three-levels to six stress levels based on music application will be the second contribution. To validate the proposed method and enhance performance between electroencephalogram (EEG) signals and stress score, support vector machine (SVM), random forest (RF), K- nearest neighbor (KNN) classifier is needed. From the finding, RF gained the best performance average accuracy 85% ±10% in Ten-fold and K-fold techniques compared with SVM and KNN.</abstract><doi>10.18280/ts.380519</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0765-0019
ispartof Traitement du signal, 2021-10, Vol.38 (5), p.1439-1447
issn 0765-0019
1958-5608
language eng
recordid cdi_crossref_primary_10_18280_ts_380519
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title The Enhancement on Stress Levels Based on Physiological Signal and Self-Stress Assessment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A55%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Enhancement%20on%20Stress%20Levels%20Based%20on%20Physiological%20Signal%20and%20Self-Stress%20Assessment&rft.jtitle=Traitement%20du%20signal&rft.au=Zahari,%20Zarith%20Liyana&rft.date=2021-10-01&rft.volume=38&rft.issue=5&rft.spage=1439&rft.epage=1447&rft.pages=1439-1447&rft.issn=0765-0019&rft.eissn=1958-5608&rft_id=info:doi/10.18280/ts.380519&rft_dat=%3Ccrossref%3E10_18280_ts_380519%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true