A New Approach for Automatic Sleep Staging: Siamese Neural Networks

Sleep staging aims to gather biological signals during sleep, and categorize them by sleep stages: waking (W), non-REM-1 (N1), non-REM-2 (N2), non-REM-3 (N3), and REM (R). These stages are distributed irregularly, and their number varies with sleep quality. These features adversely affect the perfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Traitement du signal 2021-10, Vol.38 (5), p.1423-1430
Hauptverfasser: Efe, Enes, Özşen, Seral
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1430
container_issue 5
container_start_page 1423
container_title Traitement du signal
container_volume 38
creator Efe, Enes
Özşen, Seral
description Sleep staging aims to gather biological signals during sleep, and categorize them by sleep stages: waking (W), non-REM-1 (N1), non-REM-2 (N2), non-REM-3 (N3), and REM (R). These stages are distributed irregularly, and their number varies with sleep quality. These features adversely affect the performance of automatic sleep staging systems. This paper adopts Siamese neural networks (SNNs) to solve the problem. During the network design, seven distance measurement methods, namely, Euclidean, Manhattan, Jaccard, Cosine, Canberra, Bray-Curtis, and Kullback Leibler divergence (KLD), were compared, revealing that Bray-Curtis (83.52%) and Cosine (84.94%) methods boast the best classification performance. The results of our approach are promising compared to traditional methods.
doi_str_mv 10.18280/ts.380517
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_18280_ts_380517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_18280_ts_380517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-7c0b4e409f35a9071affb1605765c37f06e8a4e735eb70e5e5df4d195be6fd1f3</originalsourceid><addsrcrecordid>eNotkE1LxDAYhIMoWNa9-AtyFrq-2TQf9VaKX7DooXoOafpmrba2JFkW_73FdS7PaYaZIeSawYbprYbbFDdcg2DqjGSsFDoXEvQ5yUBJkQOw8pKsY_yERZwVUvKM1BV9wSOt5jlM1n1QPwVaHdI02tQ72gyIM22S3fff-zva9HbEiIvjEOywIB2n8BWvyIW3Q8T1P1fk_eH-rX7Kd6-Pz3W1y91WqpQrB22BBZSeC1uCYtb7lkkQSzvHlQeJ2haouMBWAQoUnS-6ZUeL0nfM8xW5OeW6MMUY0Js59KMNP4aB-XvApGhOD_BfH0BNmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A New Approach for Automatic Sleep Staging: Siamese Neural Networks</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Efe, Enes ; Özşen, Seral</creator><creatorcontrib>Efe, Enes ; Özşen, Seral</creatorcontrib><description>Sleep staging aims to gather biological signals during sleep, and categorize them by sleep stages: waking (W), non-REM-1 (N1), non-REM-2 (N2), non-REM-3 (N3), and REM (R). These stages are distributed irregularly, and their number varies with sleep quality. These features adversely affect the performance of automatic sleep staging systems. This paper adopts Siamese neural networks (SNNs) to solve the problem. During the network design, seven distance measurement methods, namely, Euclidean, Manhattan, Jaccard, Cosine, Canberra, Bray-Curtis, and Kullback Leibler divergence (KLD), were compared, revealing that Bray-Curtis (83.52%) and Cosine (84.94%) methods boast the best classification performance. The results of our approach are promising compared to traditional methods.</description><identifier>ISSN: 0765-0019</identifier><identifier>EISSN: 1958-5608</identifier><identifier>DOI: 10.18280/ts.380517</identifier><language>eng</language><ispartof>Traitement du signal, 2021-10, Vol.38 (5), p.1423-1430</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-7c0b4e409f35a9071affb1605765c37f06e8a4e735eb70e5e5df4d195be6fd1f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Efe, Enes</creatorcontrib><creatorcontrib>Özşen, Seral</creatorcontrib><title>A New Approach for Automatic Sleep Staging: Siamese Neural Networks</title><title>Traitement du signal</title><description>Sleep staging aims to gather biological signals during sleep, and categorize them by sleep stages: waking (W), non-REM-1 (N1), non-REM-2 (N2), non-REM-3 (N3), and REM (R). These stages are distributed irregularly, and their number varies with sleep quality. These features adversely affect the performance of automatic sleep staging systems. This paper adopts Siamese neural networks (SNNs) to solve the problem. During the network design, seven distance measurement methods, namely, Euclidean, Manhattan, Jaccard, Cosine, Canberra, Bray-Curtis, and Kullback Leibler divergence (KLD), were compared, revealing that Bray-Curtis (83.52%) and Cosine (84.94%) methods boast the best classification performance. The results of our approach are promising compared to traditional methods.</description><issn>0765-0019</issn><issn>1958-5608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAYhIMoWNa9-AtyFrq-2TQf9VaKX7DooXoOafpmrba2JFkW_73FdS7PaYaZIeSawYbprYbbFDdcg2DqjGSsFDoXEvQ5yUBJkQOw8pKsY_yERZwVUvKM1BV9wSOt5jlM1n1QPwVaHdI02tQ72gyIM22S3fff-zva9HbEiIvjEOywIB2n8BWvyIW3Q8T1P1fk_eH-rX7Kd6-Pz3W1y91WqpQrB22BBZSeC1uCYtb7lkkQSzvHlQeJ2haouMBWAQoUnS-6ZUeL0nfM8xW5OeW6MMUY0Js59KMNP4aB-XvApGhOD_BfH0BNmA</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Efe, Enes</creator><creator>Özşen, Seral</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211001</creationdate><title>A New Approach for Automatic Sleep Staging: Siamese Neural Networks</title><author>Efe, Enes ; Özşen, Seral</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-7c0b4e409f35a9071affb1605765c37f06e8a4e735eb70e5e5df4d195be6fd1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Efe, Enes</creatorcontrib><creatorcontrib>Özşen, Seral</creatorcontrib><collection>CrossRef</collection><jtitle>Traitement du signal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Efe, Enes</au><au>Özşen, Seral</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Approach for Automatic Sleep Staging: Siamese Neural Networks</atitle><jtitle>Traitement du signal</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>38</volume><issue>5</issue><spage>1423</spage><epage>1430</epage><pages>1423-1430</pages><issn>0765-0019</issn><eissn>1958-5608</eissn><abstract>Sleep staging aims to gather biological signals during sleep, and categorize them by sleep stages: waking (W), non-REM-1 (N1), non-REM-2 (N2), non-REM-3 (N3), and REM (R). These stages are distributed irregularly, and their number varies with sleep quality. These features adversely affect the performance of automatic sleep staging systems. This paper adopts Siamese neural networks (SNNs) to solve the problem. During the network design, seven distance measurement methods, namely, Euclidean, Manhattan, Jaccard, Cosine, Canberra, Bray-Curtis, and Kullback Leibler divergence (KLD), were compared, revealing that Bray-Curtis (83.52%) and Cosine (84.94%) methods boast the best classification performance. The results of our approach are promising compared to traditional methods.</abstract><doi>10.18280/ts.380517</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0765-0019
ispartof Traitement du signal, 2021-10, Vol.38 (5), p.1423-1430
issn 0765-0019
1958-5608
language eng
recordid cdi_crossref_primary_10_18280_ts_380517
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title A New Approach for Automatic Sleep Staging: Siamese Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Approach%20for%20Automatic%20Sleep%20Staging:%20Siamese%20Neural%20Networks&rft.jtitle=Traitement%20du%20signal&rft.au=Efe,%20Enes&rft.date=2021-10-01&rft.volume=38&rft.issue=5&rft.spage=1423&rft.epage=1430&rft.pages=1423-1430&rft.issn=0765-0019&rft.eissn=1958-5608&rft_id=info:doi/10.18280/ts.380517&rft_dat=%3Ccrossref%3E10_18280_ts_380517%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true