Optimization of Fin with Rectangular and Triangular Shapes by Levenberg – Marquardt Method

The article proposes using the Levenberg – Marquardt (L – M) method to optimize the fin with the longitudinal profile. The objective in optimizing the fin shape: The fin volume achieved the minimum value, with the optimization variables being the fin's width and length. The research performed t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Modelling of Engineering Problems 2022-02, Vol.9 (1), p.245-250
Hauptverfasser: Nguyen, Long Nhut-Phi, Nguyen, Quan, Nguyen, Son Hoai
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 250
container_issue 1
container_start_page 245
container_title Mathematical Modelling of Engineering Problems
container_volume 9
creator Nguyen, Long Nhut-Phi
Nguyen, Quan
Nguyen, Son Hoai
description The article proposes using the Levenberg – Marquardt (L – M) method to optimize the fin with the longitudinal profile. The objective in optimizing the fin shape: The fin volume achieved the minimum value, with the optimization variables being the fin's width and length. The research performed two problems about optimal design the fin with the straight profile for triangular and rectangular shapes, obtained a tiny relative error compared to the results of the published studies. Specifically, the problem with the triangular-shaped fin, the relative error of the minimum volume compared to the two published is 0.022% & 0.092%; and the problem with the rectangular-shaped fin, the relative error is 0.68% & approximately 0%, respectively.
doi_str_mv 10.18280/mmep.090130
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_18280_mmep_090130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_18280_mmep_090130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c750-3620973c8213eab72722655fff8303560bc7c0c06b35563252d66d6285a267343</originalsourceid><addsrcrecordid>eNo9kEtOwzAURS0EElXpjAV4AaS8-MV2MkQVBaRUlSBDpMhx7MZS88FOQWXEHtghK-FTQHdw75ncwSHkPIZ5nLIULtvWDHPIIEY4IhOGIotAJvL4f2N2SmYhuAqYyL6SJhPyuB5G17pXNbq-o72lS9fRFzc29N7oUXWb3VZ5qrqaFt794UOjBhNotae5eTZdZfyGfry905XyTzvl65GuzNj09Rk5sWobzOy3p6RYXheL2yhf39wtrvJISw4RCgaZRJ2yGI2qJJOMCc6ttSkCcgGVlho0iAo5F8g4q4WoBUu5YkJiglNycbjVvg_BG1sO3rXK78sYyh835beb8uAGPwGRqleR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization of Fin with Rectangular and Triangular Shapes by Levenberg – Marquardt Method</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Nguyen, Long Nhut-Phi ; Nguyen, Quan ; Nguyen, Son Hoai</creator><creatorcontrib>Nguyen, Long Nhut-Phi ; Nguyen, Quan ; Nguyen, Son Hoai</creatorcontrib><description>The article proposes using the Levenberg – Marquardt (L – M) method to optimize the fin with the longitudinal profile. The objective in optimizing the fin shape: The fin volume achieved the minimum value, with the optimization variables being the fin's width and length. The research performed two problems about optimal design the fin with the straight profile for triangular and rectangular shapes, obtained a tiny relative error compared to the results of the published studies. Specifically, the problem with the triangular-shaped fin, the relative error of the minimum volume compared to the two published is 0.022% &amp; 0.092%; and the problem with the rectangular-shaped fin, the relative error is 0.68% &amp; approximately 0%, respectively.</description><identifier>ISSN: 2369-0739</identifier><identifier>EISSN: 2369-0747</identifier><identifier>DOI: 10.18280/mmep.090130</identifier><language>eng</language><ispartof>Mathematical Modelling of Engineering Problems, 2022-02, Vol.9 (1), p.245-250</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Nguyen, Long Nhut-Phi</creatorcontrib><creatorcontrib>Nguyen, Quan</creatorcontrib><creatorcontrib>Nguyen, Son Hoai</creatorcontrib><title>Optimization of Fin with Rectangular and Triangular Shapes by Levenberg – Marquardt Method</title><title>Mathematical Modelling of Engineering Problems</title><description>The article proposes using the Levenberg – Marquardt (L – M) method to optimize the fin with the longitudinal profile. The objective in optimizing the fin shape: The fin volume achieved the minimum value, with the optimization variables being the fin's width and length. The research performed two problems about optimal design the fin with the straight profile for triangular and rectangular shapes, obtained a tiny relative error compared to the results of the published studies. Specifically, the problem with the triangular-shaped fin, the relative error of the minimum volume compared to the two published is 0.022% &amp; 0.092%; and the problem with the rectangular-shaped fin, the relative error is 0.68% &amp; approximately 0%, respectively.</description><issn>2369-0739</issn><issn>2369-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEtOwzAURS0EElXpjAV4AaS8-MV2MkQVBaRUlSBDpMhx7MZS88FOQWXEHtghK-FTQHdw75ncwSHkPIZ5nLIULtvWDHPIIEY4IhOGIotAJvL4f2N2SmYhuAqYyL6SJhPyuB5G17pXNbq-o72lS9fRFzc29N7oUXWb3VZ5qrqaFt794UOjBhNotae5eTZdZfyGfry905XyTzvl65GuzNj09Rk5sWobzOy3p6RYXheL2yhf39wtrvJISw4RCgaZRJ2yGI2qJJOMCc6ttSkCcgGVlho0iAo5F8g4q4WoBUu5YkJiglNycbjVvg_BG1sO3rXK78sYyh835beb8uAGPwGRqleR</recordid><startdate>20220228</startdate><enddate>20220228</enddate><creator>Nguyen, Long Nhut-Phi</creator><creator>Nguyen, Quan</creator><creator>Nguyen, Son Hoai</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220228</creationdate><title>Optimization of Fin with Rectangular and Triangular Shapes by Levenberg – Marquardt Method</title><author>Nguyen, Long Nhut-Phi ; Nguyen, Quan ; Nguyen, Son Hoai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c750-3620973c8213eab72722655fff8303560bc7c0c06b35563252d66d6285a267343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Long Nhut-Phi</creatorcontrib><creatorcontrib>Nguyen, Quan</creatorcontrib><creatorcontrib>Nguyen, Son Hoai</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Modelling of Engineering Problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Long Nhut-Phi</au><au>Nguyen, Quan</au><au>Nguyen, Son Hoai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Fin with Rectangular and Triangular Shapes by Levenberg – Marquardt Method</atitle><jtitle>Mathematical Modelling of Engineering Problems</jtitle><date>2022-02-28</date><risdate>2022</risdate><volume>9</volume><issue>1</issue><spage>245</spage><epage>250</epage><pages>245-250</pages><issn>2369-0739</issn><eissn>2369-0747</eissn><abstract>The article proposes using the Levenberg – Marquardt (L – M) method to optimize the fin with the longitudinal profile. The objective in optimizing the fin shape: The fin volume achieved the minimum value, with the optimization variables being the fin's width and length. The research performed two problems about optimal design the fin with the straight profile for triangular and rectangular shapes, obtained a tiny relative error compared to the results of the published studies. Specifically, the problem with the triangular-shaped fin, the relative error of the minimum volume compared to the two published is 0.022% &amp; 0.092%; and the problem with the rectangular-shaped fin, the relative error is 0.68% &amp; approximately 0%, respectively.</abstract><doi>10.18280/mmep.090130</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2369-0739
ispartof Mathematical Modelling of Engineering Problems, 2022-02, Vol.9 (1), p.245-250
issn 2369-0739
2369-0747
language eng
recordid cdi_crossref_primary_10_18280_mmep_090130
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Optimization of Fin with Rectangular and Triangular Shapes by Levenberg – Marquardt Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Fin%20with%20Rectangular%20and%20Triangular%20Shapes%20by%20Levenberg%20%E2%80%93%20Marquardt%20Method&rft.jtitle=Mathematical%20Modelling%20of%20Engineering%20Problems&rft.au=Nguyen,%20Long%20Nhut-Phi&rft.date=2022-02-28&rft.volume=9&rft.issue=1&rft.spage=245&rft.epage=250&rft.pages=245-250&rft.issn=2369-0739&rft.eissn=2369-0747&rft_id=info:doi/10.18280/mmep.090130&rft_dat=%3Ccrossref%3E10_18280_mmep_090130%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true