Optimization of Fin with Rectangular and Triangular Shapes by Levenberg – Marquardt Method
The article proposes using the Levenberg – Marquardt (L – M) method to optimize the fin with the longitudinal profile. The objective in optimizing the fin shape: The fin volume achieved the minimum value, with the optimization variables being the fin's width and length. The research performed t...
Gespeichert in:
Veröffentlicht in: | Mathematical Modelling of Engineering Problems 2022-02, Vol.9 (1), p.245-250 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 250 |
---|---|
container_issue | 1 |
container_start_page | 245 |
container_title | Mathematical Modelling of Engineering Problems |
container_volume | 9 |
creator | Nguyen, Long Nhut-Phi Nguyen, Quan Nguyen, Son Hoai |
description | The article proposes using the Levenberg – Marquardt (L – M) method to optimize the fin with the longitudinal profile. The objective in optimizing the fin shape: The fin volume achieved the minimum value, with the optimization variables being the fin's width and length. The research performed two problems about optimal design the fin with the straight profile for triangular and rectangular shapes, obtained a tiny relative error compared to the results of the published studies. Specifically, the problem with the triangular-shaped fin, the relative error of the minimum volume compared to the two published is 0.022% & 0.092%; and the problem with the rectangular-shaped fin, the relative error is 0.68% & approximately 0%, respectively. |
doi_str_mv | 10.18280/mmep.090130 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_18280_mmep_090130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_18280_mmep_090130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c750-3620973c8213eab72722655fff8303560bc7c0c06b35563252d66d6285a267343</originalsourceid><addsrcrecordid>eNo9kEtOwzAURS0EElXpjAV4AaS8-MV2MkQVBaRUlSBDpMhx7MZS88FOQWXEHtghK-FTQHdw75ncwSHkPIZ5nLIULtvWDHPIIEY4IhOGIotAJvL4f2N2SmYhuAqYyL6SJhPyuB5G17pXNbq-o72lS9fRFzc29N7oUXWb3VZ5qrqaFt794UOjBhNotae5eTZdZfyGfry905XyTzvl65GuzNj09Rk5sWobzOy3p6RYXheL2yhf39wtrvJISw4RCgaZRJ2yGI2qJJOMCc6ttSkCcgGVlho0iAo5F8g4q4WoBUu5YkJiglNycbjVvg_BG1sO3rXK78sYyh835beb8uAGPwGRqleR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization of Fin with Rectangular and Triangular Shapes by Levenberg – Marquardt Method</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Nguyen, Long Nhut-Phi ; Nguyen, Quan ; Nguyen, Son Hoai</creator><creatorcontrib>Nguyen, Long Nhut-Phi ; Nguyen, Quan ; Nguyen, Son Hoai</creatorcontrib><description>The article proposes using the Levenberg – Marquardt (L – M) method to optimize the fin with the longitudinal profile. The objective in optimizing the fin shape: The fin volume achieved the minimum value, with the optimization variables being the fin's width and length. The research performed two problems about optimal design the fin with the straight profile for triangular and rectangular shapes, obtained a tiny relative error compared to the results of the published studies. Specifically, the problem with the triangular-shaped fin, the relative error of the minimum volume compared to the two published is 0.022% & 0.092%; and the problem with the rectangular-shaped fin, the relative error is 0.68% & approximately 0%, respectively.</description><identifier>ISSN: 2369-0739</identifier><identifier>EISSN: 2369-0747</identifier><identifier>DOI: 10.18280/mmep.090130</identifier><language>eng</language><ispartof>Mathematical Modelling of Engineering Problems, 2022-02, Vol.9 (1), p.245-250</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Nguyen, Long Nhut-Phi</creatorcontrib><creatorcontrib>Nguyen, Quan</creatorcontrib><creatorcontrib>Nguyen, Son Hoai</creatorcontrib><title>Optimization of Fin with Rectangular and Triangular Shapes by Levenberg – Marquardt Method</title><title>Mathematical Modelling of Engineering Problems</title><description>The article proposes using the Levenberg – Marquardt (L – M) method to optimize the fin with the longitudinal profile. The objective in optimizing the fin shape: The fin volume achieved the minimum value, with the optimization variables being the fin's width and length. The research performed two problems about optimal design the fin with the straight profile for triangular and rectangular shapes, obtained a tiny relative error compared to the results of the published studies. Specifically, the problem with the triangular-shaped fin, the relative error of the minimum volume compared to the two published is 0.022% & 0.092%; and the problem with the rectangular-shaped fin, the relative error is 0.68% & approximately 0%, respectively.</description><issn>2369-0739</issn><issn>2369-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEtOwzAURS0EElXpjAV4AaS8-MV2MkQVBaRUlSBDpMhx7MZS88FOQWXEHtghK-FTQHdw75ncwSHkPIZ5nLIULtvWDHPIIEY4IhOGIotAJvL4f2N2SmYhuAqYyL6SJhPyuB5G17pXNbq-o72lS9fRFzc29N7oUXWb3VZ5qrqaFt794UOjBhNotae5eTZdZfyGfry905XyTzvl65GuzNj09Rk5sWobzOy3p6RYXheL2yhf39wtrvJISw4RCgaZRJ2yGI2qJJOMCc6ttSkCcgGVlho0iAo5F8g4q4WoBUu5YkJiglNycbjVvg_BG1sO3rXK78sYyh835beb8uAGPwGRqleR</recordid><startdate>20220228</startdate><enddate>20220228</enddate><creator>Nguyen, Long Nhut-Phi</creator><creator>Nguyen, Quan</creator><creator>Nguyen, Son Hoai</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220228</creationdate><title>Optimization of Fin with Rectangular and Triangular Shapes by Levenberg – Marquardt Method</title><author>Nguyen, Long Nhut-Phi ; Nguyen, Quan ; Nguyen, Son Hoai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c750-3620973c8213eab72722655fff8303560bc7c0c06b35563252d66d6285a267343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Long Nhut-Phi</creatorcontrib><creatorcontrib>Nguyen, Quan</creatorcontrib><creatorcontrib>Nguyen, Son Hoai</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Modelling of Engineering Problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Long Nhut-Phi</au><au>Nguyen, Quan</au><au>Nguyen, Son Hoai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Fin with Rectangular and Triangular Shapes by Levenberg – Marquardt Method</atitle><jtitle>Mathematical Modelling of Engineering Problems</jtitle><date>2022-02-28</date><risdate>2022</risdate><volume>9</volume><issue>1</issue><spage>245</spage><epage>250</epage><pages>245-250</pages><issn>2369-0739</issn><eissn>2369-0747</eissn><abstract>The article proposes using the Levenberg – Marquardt (L – M) method to optimize the fin with the longitudinal profile. The objective in optimizing the fin shape: The fin volume achieved the minimum value, with the optimization variables being the fin's width and length. The research performed two problems about optimal design the fin with the straight profile for triangular and rectangular shapes, obtained a tiny relative error compared to the results of the published studies. Specifically, the problem with the triangular-shaped fin, the relative error of the minimum volume compared to the two published is 0.022% & 0.092%; and the problem with the rectangular-shaped fin, the relative error is 0.68% & approximately 0%, respectively.</abstract><doi>10.18280/mmep.090130</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2369-0739 |
ispartof | Mathematical Modelling of Engineering Problems, 2022-02, Vol.9 (1), p.245-250 |
issn | 2369-0739 2369-0747 |
language | eng |
recordid | cdi_crossref_primary_10_18280_mmep_090130 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Optimization of Fin with Rectangular and Triangular Shapes by Levenberg – Marquardt Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Fin%20with%20Rectangular%20and%20Triangular%20Shapes%20by%20Levenberg%20%E2%80%93%20Marquardt%20Method&rft.jtitle=Mathematical%20Modelling%20of%20Engineering%20Problems&rft.au=Nguyen,%20Long%20Nhut-Phi&rft.date=2022-02-28&rft.volume=9&rft.issue=1&rft.spage=245&rft.epage=250&rft.pages=245-250&rft.issn=2369-0739&rft.eissn=2369-0747&rft_id=info:doi/10.18280/mmep.090130&rft_dat=%3Ccrossref%3E10_18280_mmep_090130%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |