Prediction of Potential Future IT Personnel in Bangladesh using Machine Learning Classifier
Bangladesh is one of the most promising developing countries in IT sector, where people from several disciplines and experiences are involved in this sector. However, no direct analysis in this sector is published yet, which covers the proper guideline for predicting future IT personnel. Hence this...
Gespeichert in:
Veröffentlicht in: | Global Disclosure of Economics and Business 2017-06, Vol.6 (1), p.7-18 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | 1 |
container_start_page | 7 |
container_title | Global Disclosure of Economics and Business |
container_volume | 6 |
creator | Parvez, Md. Hasnat Khatun, Most. Moriom Reza, Sayed Mohsin Rahman, Md. Mahfujur Patwary, Md. Fazlul Karim |
description | Bangladesh is one of the most promising developing countries in IT sector, where people from several disciplines and experiences are involved in this sector. However, no direct analysis in this sector is published yet, which covers the proper guideline for predicting future IT personnel. Hence this is not a simple solution, training data from real IT sector are needed and trained several classifiers for detecting perfect results. Machine learning algorithms can be used for predicting future potential IT personnel. In this paper, four different classifiers named as Naive Bayes, J48, Bagging and Random Forest in five different folds are experimented for that prediction. Results are pointed out that Random Forest performs better accuracy than other experimented classifier for future IT personnel prediction. It is mentioned that the standard accuracy measurement process named as Precision, Recall, F-Measure, ROC Area etc. are used for evaluating the results. |
doi_str_mv | 10.18034/gdeb.v6i1.112 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_18034_gdeb_v6i1_112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_18034_gdeb_v6i1_112</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_18034_gdeb_v6i1_1123</originalsourceid><addsrcrecordid>eNqVz8FKw0AQBuClKLTYXj3PCyTuJk3dXC0WBYUcevOwbJNJOrDOymwi-PY2xRfwND8DPz-fUvdG58bqcvswdHjKv3dkcmOKhVoVpX7M6qoubq65ymqzs0u1SYlO2pRWV7W1K_XRCHbUjhQZYg9NHJFH8gEO0zgJwusRGpQUmTEAMTx5HoLvMJ1hSsQDvPv2TIzwhl54fuyDv2z0hLJWt70PCTd_907lh-fj_iVrJaYk2LsvoU8vP85od1W4WeFmhbsoyn8XfgEqo1IR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prediction of Potential Future IT Personnel in Bangladesh using Machine Learning Classifier</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Parvez, Md. Hasnat ; Khatun, Most. Moriom ; Reza, Sayed Mohsin ; Rahman, Md. Mahfujur ; Patwary, Md. Fazlul Karim</creator><creatorcontrib>Parvez, Md. Hasnat ; Khatun, Most. Moriom ; Reza, Sayed Mohsin ; Rahman, Md. Mahfujur ; Patwary, Md. Fazlul Karim</creatorcontrib><description>Bangladesh is one of the most promising developing countries in IT sector, where people from several disciplines and experiences are involved in this sector. However, no direct analysis in this sector is published yet, which covers the proper guideline for predicting future IT personnel. Hence this is not a simple solution, training data from real IT sector are needed and trained several classifiers for detecting perfect results. Machine learning algorithms can be used for predicting future potential IT personnel. In this paper, four different classifiers named as Naive Bayes, J48, Bagging and Random Forest in five different folds are experimented for that prediction. Results are pointed out that Random Forest performs better accuracy than other experimented classifier for future IT personnel prediction. It is mentioned that the standard accuracy measurement process named as Precision, Recall, F-Measure, ROC Area etc. are used for evaluating the results.</description><identifier>ISSN: 2305-9168</identifier><identifier>EISSN: 2307-9592</identifier><identifier>DOI: 10.18034/gdeb.v6i1.112</identifier><language>eng</language><ispartof>Global Disclosure of Economics and Business, 2017-06, Vol.6 (1), p.7-18</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_18034_gdeb_v6i1_1123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Parvez, Md. Hasnat</creatorcontrib><creatorcontrib>Khatun, Most. Moriom</creatorcontrib><creatorcontrib>Reza, Sayed Mohsin</creatorcontrib><creatorcontrib>Rahman, Md. Mahfujur</creatorcontrib><creatorcontrib>Patwary, Md. Fazlul Karim</creatorcontrib><title>Prediction of Potential Future IT Personnel in Bangladesh using Machine Learning Classifier</title><title>Global Disclosure of Economics and Business</title><description>Bangladesh is one of the most promising developing countries in IT sector, where people from several disciplines and experiences are involved in this sector. However, no direct analysis in this sector is published yet, which covers the proper guideline for predicting future IT personnel. Hence this is not a simple solution, training data from real IT sector are needed and trained several classifiers for detecting perfect results. Machine learning algorithms can be used for predicting future potential IT personnel. In this paper, four different classifiers named as Naive Bayes, J48, Bagging and Random Forest in five different folds are experimented for that prediction. Results are pointed out that Random Forest performs better accuracy than other experimented classifier for future IT personnel prediction. It is mentioned that the standard accuracy measurement process named as Precision, Recall, F-Measure, ROC Area etc. are used for evaluating the results.</description><issn>2305-9168</issn><issn>2307-9592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqVz8FKw0AQBuClKLTYXj3PCyTuJk3dXC0WBYUcevOwbJNJOrDOymwi-PY2xRfwND8DPz-fUvdG58bqcvswdHjKv3dkcmOKhVoVpX7M6qoubq65ymqzs0u1SYlO2pRWV7W1K_XRCHbUjhQZYg9NHJFH8gEO0zgJwusRGpQUmTEAMTx5HoLvMJ1hSsQDvPv2TIzwhl54fuyDv2z0hLJWt70PCTd_907lh-fj_iVrJaYk2LsvoU8vP85od1W4WeFmhbsoyn8XfgEqo1IR</recordid><startdate>20170630</startdate><enddate>20170630</enddate><creator>Parvez, Md. Hasnat</creator><creator>Khatun, Most. Moriom</creator><creator>Reza, Sayed Mohsin</creator><creator>Rahman, Md. Mahfujur</creator><creator>Patwary, Md. Fazlul Karim</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170630</creationdate><title>Prediction of Potential Future IT Personnel in Bangladesh using Machine Learning Classifier</title><author>Parvez, Md. Hasnat ; Khatun, Most. Moriom ; Reza, Sayed Mohsin ; Rahman, Md. Mahfujur ; Patwary, Md. Fazlul Karim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_18034_gdeb_v6i1_1123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Parvez, Md. Hasnat</creatorcontrib><creatorcontrib>Khatun, Most. Moriom</creatorcontrib><creatorcontrib>Reza, Sayed Mohsin</creatorcontrib><creatorcontrib>Rahman, Md. Mahfujur</creatorcontrib><creatorcontrib>Patwary, Md. Fazlul Karim</creatorcontrib><collection>CrossRef</collection><jtitle>Global Disclosure of Economics and Business</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parvez, Md. Hasnat</au><au>Khatun, Most. Moriom</au><au>Reza, Sayed Mohsin</au><au>Rahman, Md. Mahfujur</au><au>Patwary, Md. Fazlul Karim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Potential Future IT Personnel in Bangladesh using Machine Learning Classifier</atitle><jtitle>Global Disclosure of Economics and Business</jtitle><date>2017-06-30</date><risdate>2017</risdate><volume>6</volume><issue>1</issue><spage>7</spage><epage>18</epage><pages>7-18</pages><issn>2305-9168</issn><eissn>2307-9592</eissn><abstract>Bangladesh is one of the most promising developing countries in IT sector, where people from several disciplines and experiences are involved in this sector. However, no direct analysis in this sector is published yet, which covers the proper guideline for predicting future IT personnel. Hence this is not a simple solution, training data from real IT sector are needed and trained several classifiers for detecting perfect results. Machine learning algorithms can be used for predicting future potential IT personnel. In this paper, four different classifiers named as Naive Bayes, J48, Bagging and Random Forest in five different folds are experimented for that prediction. Results are pointed out that Random Forest performs better accuracy than other experimented classifier for future IT personnel prediction. It is mentioned that the standard accuracy measurement process named as Precision, Recall, F-Measure, ROC Area etc. are used for evaluating the results.</abstract><doi>10.18034/gdeb.v6i1.112</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2305-9168 |
ispartof | Global Disclosure of Economics and Business, 2017-06, Vol.6 (1), p.7-18 |
issn | 2305-9168 2307-9592 |
language | eng |
recordid | cdi_crossref_primary_10_18034_gdeb_v6i1_112 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Prediction of Potential Future IT Personnel in Bangladesh using Machine Learning Classifier |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A48%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Potential%20Future%20IT%20Personnel%20in%20Bangladesh%20using%20Machine%20Learning%20Classifier&rft.jtitle=Global%20Disclosure%20of%20Economics%20and%20Business&rft.au=Parvez,%20Md.%20Hasnat&rft.date=2017-06-30&rft.volume=6&rft.issue=1&rft.spage=7&rft.epage=18&rft.pages=7-18&rft.issn=2305-9168&rft.eissn=2307-9592&rft_id=info:doi/10.18034/gdeb.v6i1.112&rft_dat=%3Ccrossref%3E10_18034_gdeb_v6i1_112%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |