Principal Component Analysis Approach for Yield Attributing Traits in Okra (Abelmoschus esculentus L.) Genotypes
The research work was investigated among 55 okra accessions in RCBD with three replications and was evaluated for seventeen phenotypic characteristics of okra principal component analysis at the Agriculture Research Farm, Lovely Professional University, Phagwara (Punjab). According to principal comp...
Gespeichert in:
Veröffentlicht in: | Journal of Advanced Zoology 2023-10, Vol.44 (3), p.958-964 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 964 |
---|---|
container_issue | 3 |
container_start_page | 958 |
container_title | Journal of Advanced Zoology |
container_volume | 44 |
creator | Abhilash, P V Talekar, Nilesh Delvadiya, I. R. Singh, Shailesh Kumar |
description | The research work was investigated among 55 okra accessions in RCBD with three replications and was evaluated for seventeen phenotypic characteristics of okra principal component analysis at the Agriculture Research Farm, Lovely Professional University, Phagwara (Punjab). According to principal component analysis (PCA), six of the seventeen (PC1 to PC6) PCs had eigenvalues above 1.0 and a cumulative variance of around 75.52. PC 1 alone accounted for the highest variance of 25.38 by PC1, followed by PC 2 with 15.98%. The outcomes of this investigation might be used as a foundation for defining and implementing subsequent okra breeding initiatives. Days to the 1st flowering, days to the 50% flowering and days to the first fruit harvest appear above the average variance contribution of each PC in the screen plot. Biplot analysis of PC1 and PC2 in contribution dim.1 revealed 25% and dim.2 revealed 16%. |
doi_str_mv | 10.17762/jaz.v44i3.1254 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_17762_jaz_v44i3_1254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17762_jaz_v44i3_1254</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_17762_jaz_v44i3_12543</originalsourceid><addsrcrecordid>eNqVz71OwzAUBWAPILWCzqx3hKFp7DgNjFHFz4AEQxcmy3EdesGxLV8HKTw9oeIFmM5ZzpE-xq54WfCm2YrNh_4uvqTEquCilmdsWYq6WjeCywVbEWFXlkLebetbuWTxNaE3GLWDXRhi8NZnaL12EyFBG2MK2hyhDwne0LoDtDkn7MaM_h32SWMmQA8vn0nDddtZNwQyx5HAkhndfDbX5-IGHq0PeYqWLtl5rx3Z1V9esM3D_X73tDYpECXbq5hw0GlSvFQnj5o96uRRv57q_4sflSRYcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Principal Component Analysis Approach for Yield Attributing Traits in Okra (Abelmoschus esculentus L.) Genotypes</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Abhilash, P V ; Talekar, Nilesh ; Delvadiya, I. R. ; Singh, Shailesh Kumar</creator><creatorcontrib>Abhilash, P V ; Talekar, Nilesh ; Delvadiya, I. R. ; Singh, Shailesh Kumar</creatorcontrib><description>The research work was investigated among 55 okra accessions in RCBD with three replications and was evaluated for seventeen phenotypic characteristics of okra principal component analysis at the Agriculture Research Farm, Lovely Professional University, Phagwara (Punjab). According to principal component analysis (PCA), six of the seventeen (PC1 to PC6) PCs had eigenvalues above 1.0 and a cumulative variance of around 75.52. PC 1 alone accounted for the highest variance of 25.38 by PC1, followed by PC 2 with 15.98%. The outcomes of this investigation might be used as a foundation for defining and implementing subsequent okra breeding initiatives. Days to the 1st flowering, days to the 50% flowering and days to the first fruit harvest appear above the average variance contribution of each PC in the screen plot. Biplot analysis of PC1 and PC2 in contribution dim.1 revealed 25% and dim.2 revealed 16%.</description><identifier>ISSN: 0253-7214</identifier><identifier>DOI: 10.17762/jaz.v44i3.1254</identifier><language>eng</language><ispartof>Journal of Advanced Zoology, 2023-10, Vol.44 (3), p.958-964</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Abhilash, P V</creatorcontrib><creatorcontrib>Talekar, Nilesh</creatorcontrib><creatorcontrib>Delvadiya, I. R.</creatorcontrib><creatorcontrib>Singh, Shailesh Kumar</creatorcontrib><title>Principal Component Analysis Approach for Yield Attributing Traits in Okra (Abelmoschus esculentus L.) Genotypes</title><title>Journal of Advanced Zoology</title><description>The research work was investigated among 55 okra accessions in RCBD with three replications and was evaluated for seventeen phenotypic characteristics of okra principal component analysis at the Agriculture Research Farm, Lovely Professional University, Phagwara (Punjab). According to principal component analysis (PCA), six of the seventeen (PC1 to PC6) PCs had eigenvalues above 1.0 and a cumulative variance of around 75.52. PC 1 alone accounted for the highest variance of 25.38 by PC1, followed by PC 2 with 15.98%. The outcomes of this investigation might be used as a foundation for defining and implementing subsequent okra breeding initiatives. Days to the 1st flowering, days to the 50% flowering and days to the first fruit harvest appear above the average variance contribution of each PC in the screen plot. Biplot analysis of PC1 and PC2 in contribution dim.1 revealed 25% and dim.2 revealed 16%.</description><issn>0253-7214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqVz71OwzAUBWAPILWCzqx3hKFp7DgNjFHFz4AEQxcmy3EdesGxLV8HKTw9oeIFmM5ZzpE-xq54WfCm2YrNh_4uvqTEquCilmdsWYq6WjeCywVbEWFXlkLebetbuWTxNaE3GLWDXRhi8NZnaL12EyFBG2MK2hyhDwne0LoDtDkn7MaM_h32SWMmQA8vn0nDddtZNwQyx5HAkhndfDbX5-IGHq0PeYqWLtl5rx3Z1V9esM3D_X73tDYpECXbq5hw0GlSvFQnj5o96uRRv57q_4sflSRYcw</recordid><startdate>20231027</startdate><enddate>20231027</enddate><creator>Abhilash, P V</creator><creator>Talekar, Nilesh</creator><creator>Delvadiya, I. R.</creator><creator>Singh, Shailesh Kumar</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231027</creationdate><title>Principal Component Analysis Approach for Yield Attributing Traits in Okra (Abelmoschus esculentus L.) Genotypes</title><author>Abhilash, P V ; Talekar, Nilesh ; Delvadiya, I. R. ; Singh, Shailesh Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_17762_jaz_v44i3_12543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abhilash, P V</creatorcontrib><creatorcontrib>Talekar, Nilesh</creatorcontrib><creatorcontrib>Delvadiya, I. R.</creatorcontrib><creatorcontrib>Singh, Shailesh Kumar</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Advanced Zoology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abhilash, P V</au><au>Talekar, Nilesh</au><au>Delvadiya, I. R.</au><au>Singh, Shailesh Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Principal Component Analysis Approach for Yield Attributing Traits in Okra (Abelmoschus esculentus L.) Genotypes</atitle><jtitle>Journal of Advanced Zoology</jtitle><date>2023-10-27</date><risdate>2023</risdate><volume>44</volume><issue>3</issue><spage>958</spage><epage>964</epage><pages>958-964</pages><issn>0253-7214</issn><abstract>The research work was investigated among 55 okra accessions in RCBD with three replications and was evaluated for seventeen phenotypic characteristics of okra principal component analysis at the Agriculture Research Farm, Lovely Professional University, Phagwara (Punjab). According to principal component analysis (PCA), six of the seventeen (PC1 to PC6) PCs had eigenvalues above 1.0 and a cumulative variance of around 75.52. PC 1 alone accounted for the highest variance of 25.38 by PC1, followed by PC 2 with 15.98%. The outcomes of this investigation might be used as a foundation for defining and implementing subsequent okra breeding initiatives. Days to the 1st flowering, days to the 50% flowering and days to the first fruit harvest appear above the average variance contribution of each PC in the screen plot. Biplot analysis of PC1 and PC2 in contribution dim.1 revealed 25% and dim.2 revealed 16%.</abstract><doi>10.17762/jaz.v44i3.1254</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-7214 |
ispartof | Journal of Advanced Zoology, 2023-10, Vol.44 (3), p.958-964 |
issn | 0253-7214 |
language | eng |
recordid | cdi_crossref_primary_10_17762_jaz_v44i3_1254 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Principal Component Analysis Approach for Yield Attributing Traits in Okra (Abelmoschus esculentus L.) Genotypes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T18%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Principal%20Component%20Analysis%20Approach%20for%20Yield%20Attributing%20Traits%20in%20Okra%20(Abelmoschus%20esculentus%20L.)%20Genotypes&rft.jtitle=Journal%20of%20Advanced%20Zoology&rft.au=Abhilash,%20P%20V&rft.date=2023-10-27&rft.volume=44&rft.issue=3&rft.spage=958&rft.epage=964&rft.pages=958-964&rft.issn=0253-7214&rft_id=info:doi/10.17762/jaz.v44i3.1254&rft_dat=%3Ccrossref%3E10_17762_jaz_v44i3_1254%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |