Prediction of the Clinical Outcomes in Patients with CRRT Using Body Composition Monitoring: A Machine Learning Approach to a Multicenter Cohort Study: PO0251

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Society of Nephrology 2021-10, Vol.32 (10S), p.129-130
Hauptverfasser: Yoo, Kyung Don, Noh, Junhyug, An, Jung Nam, Baek, Seon Ha, Ahn, Shin-Young, Rhee, Harin, Seong, Eun Young, Cho, Jang-Hee, Kim, Dong Ki, Kim, Sejoong, Lee, Jung Pyo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 130
container_issue 10S
container_start_page 129
container_title Journal of the American Society of Nephrology
container_volume 32
creator Yoo, Kyung Don
Noh, Junhyug
An, Jung Nam
Baek, Seon Ha
Ahn, Shin-Young
Rhee, Harin
Seong, Eun Young
Cho, Jang-Hee
Kim, Dong Ki
Kim, Sejoong
Lee, Jung Pyo
description
doi_str_mv 10.1681/ASN.20213210S1129c
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1681_ASN_20213210S1129c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1681_ASN_20213210S1129c</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1681_ASN_20213210S1129c3</originalsourceid><addsrcrecordid>eNqdj01OwzAQhb0AifJzAVZzgRbbgQTYhQjEooGqKevIchwyKPFE9lQoF-G8pIgNW1YjvXnvkz4hLpVcqfRWXeXVy0pLrRKtZKWUvrNHYqHkdbpM0yw5EacxfkipbnSWLcTXJrgGLSN5oBa4c1D06NGaHl73bGlwEdDDxjA6zxE-kTsottsdvEX07_BAzQQFDSNF_KGU5JEpzL97yKE0tkPvYO1M8Id-Po6B5hCYwEC57xntDHZhhnQUGCreN9O5OG5NH93F7z0T-ulxVzwvbaAYg2vrMeBgwlQrWR-s69m6_mud_Gv0DWedZJ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prediction of the Clinical Outcomes in Patients with CRRT Using Body Composition Monitoring: A Machine Learning Approach to a Multicenter Cohort Study: PO0251</title><source>Free E-Journal (出版社公開部分のみ)</source><source>PubMed Central</source><creator>Yoo, Kyung Don ; Noh, Junhyug ; An, Jung Nam ; Baek, Seon Ha ; Ahn, Shin-Young ; Rhee, Harin ; Seong, Eun Young ; Cho, Jang-Hee ; Kim, Dong Ki ; Kim, Sejoong ; Lee, Jung Pyo</creator><creatorcontrib>Yoo, Kyung Don ; Noh, Junhyug ; An, Jung Nam ; Baek, Seon Ha ; Ahn, Shin-Young ; Rhee, Harin ; Seong, Eun Young ; Cho, Jang-Hee ; Kim, Dong Ki ; Kim, Sejoong ; Lee, Jung Pyo</creatorcontrib><identifier>ISSN: 1046-6673</identifier><identifier>DOI: 10.1681/ASN.20213210S1129c</identifier><language>eng</language><ispartof>Journal of the American Society of Nephrology, 2021-10, Vol.32 (10S), p.129-130</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yoo, Kyung Don</creatorcontrib><creatorcontrib>Noh, Junhyug</creatorcontrib><creatorcontrib>An, Jung Nam</creatorcontrib><creatorcontrib>Baek, Seon Ha</creatorcontrib><creatorcontrib>Ahn, Shin-Young</creatorcontrib><creatorcontrib>Rhee, Harin</creatorcontrib><creatorcontrib>Seong, Eun Young</creatorcontrib><creatorcontrib>Cho, Jang-Hee</creatorcontrib><creatorcontrib>Kim, Dong Ki</creatorcontrib><creatorcontrib>Kim, Sejoong</creatorcontrib><creatorcontrib>Lee, Jung Pyo</creatorcontrib><title>Prediction of the Clinical Outcomes in Patients with CRRT Using Body Composition Monitoring: A Machine Learning Approach to a Multicenter Cohort Study: PO0251</title><title>Journal of the American Society of Nephrology</title><issn>1046-6673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqdj01OwzAQhb0AifJzAVZzgRbbgQTYhQjEooGqKevIchwyKPFE9lQoF-G8pIgNW1YjvXnvkz4hLpVcqfRWXeXVy0pLrRKtZKWUvrNHYqHkdbpM0yw5EacxfkipbnSWLcTXJrgGLSN5oBa4c1D06NGaHl73bGlwEdDDxjA6zxE-kTsottsdvEX07_BAzQQFDSNF_KGU5JEpzL97yKE0tkPvYO1M8Id-Po6B5hCYwEC57xntDHZhhnQUGCreN9O5OG5NH93F7z0T-ulxVzwvbaAYg2vrMeBgwlQrWR-s69m6_mud_Gv0DWedZJ0</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Yoo, Kyung Don</creator><creator>Noh, Junhyug</creator><creator>An, Jung Nam</creator><creator>Baek, Seon Ha</creator><creator>Ahn, Shin-Young</creator><creator>Rhee, Harin</creator><creator>Seong, Eun Young</creator><creator>Cho, Jang-Hee</creator><creator>Kim, Dong Ki</creator><creator>Kim, Sejoong</creator><creator>Lee, Jung Pyo</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202110</creationdate><title>Prediction of the Clinical Outcomes in Patients with CRRT Using Body Composition Monitoring: A Machine Learning Approach to a Multicenter Cohort Study</title><author>Yoo, Kyung Don ; Noh, Junhyug ; An, Jung Nam ; Baek, Seon Ha ; Ahn, Shin-Young ; Rhee, Harin ; Seong, Eun Young ; Cho, Jang-Hee ; Kim, Dong Ki ; Kim, Sejoong ; Lee, Jung Pyo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1681_ASN_20213210S1129c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoo, Kyung Don</creatorcontrib><creatorcontrib>Noh, Junhyug</creatorcontrib><creatorcontrib>An, Jung Nam</creatorcontrib><creatorcontrib>Baek, Seon Ha</creatorcontrib><creatorcontrib>Ahn, Shin-Young</creatorcontrib><creatorcontrib>Rhee, Harin</creatorcontrib><creatorcontrib>Seong, Eun Young</creatorcontrib><creatorcontrib>Cho, Jang-Hee</creatorcontrib><creatorcontrib>Kim, Dong Ki</creatorcontrib><creatorcontrib>Kim, Sejoong</creatorcontrib><creatorcontrib>Lee, Jung Pyo</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the American Society of Nephrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoo, Kyung Don</au><au>Noh, Junhyug</au><au>An, Jung Nam</au><au>Baek, Seon Ha</au><au>Ahn, Shin-Young</au><au>Rhee, Harin</au><au>Seong, Eun Young</au><au>Cho, Jang-Hee</au><au>Kim, Dong Ki</au><au>Kim, Sejoong</au><au>Lee, Jung Pyo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of the Clinical Outcomes in Patients with CRRT Using Body Composition Monitoring: A Machine Learning Approach to a Multicenter Cohort Study: PO0251</atitle><jtitle>Journal of the American Society of Nephrology</jtitle><date>2021-10</date><risdate>2021</risdate><volume>32</volume><issue>10S</issue><spage>129</spage><epage>130</epage><pages>129-130</pages><issn>1046-6673</issn><doi>10.1681/ASN.20213210S1129c</doi></addata></record>
fulltext fulltext
identifier ISSN: 1046-6673
ispartof Journal of the American Society of Nephrology, 2021-10, Vol.32 (10S), p.129-130
issn 1046-6673
language eng
recordid cdi_crossref_primary_10_1681_ASN_20213210S1129c
source Free E-Journal (出版社公開部分のみ); PubMed Central
title Prediction of the Clinical Outcomes in Patients with CRRT Using Body Composition Monitoring: A Machine Learning Approach to a Multicenter Cohort Study: PO0251
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A42%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20the%20Clinical%20Outcomes%20in%20Patients%20with%20CRRT%20Using%20Body%20Composition%20Monitoring:%20A%20Machine%20Learning%20Approach%20to%20a%20Multicenter%20Cohort%20Study:%20PO0251&rft.jtitle=Journal%20of%20the%20American%20Society%20of%20Nephrology&rft.au=Yoo,%20Kyung%20Don&rft.date=2021-10&rft.volume=32&rft.issue=10S&rft.spage=129&rft.epage=130&rft.pages=129-130&rft.issn=1046-6673&rft_id=info:doi/10.1681/ASN.20213210S1129c&rft_dat=%3Ccrossref%3E10_1681_ASN_20213210S1129c%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true