Capturing the random mechanical behaviour of granular materials: a comprehensive stochastic discrete-element method study

This research pioneers a stochastic discrete-element method (DEM) by integrating the probability density evolution method (PDEM), offering a novel approach to connect particle-scale property uncertainties, specifically inter-particle friction coefficient (μ) and particle shear modulus (G p ), with m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Géotechnique 2024-10, p.1-14
Hauptverfasser: Liu, DeYun, Lyu, Meng-Ze
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title Géotechnique
container_volume
creator Liu, DeYun
Lyu, Meng-Ze
description This research pioneers a stochastic discrete-element method (DEM) by integrating the probability density evolution method (PDEM), offering a novel approach to connect particle-scale property uncertainties, specifically inter-particle friction coefficient (μ) and particle shear modulus (G p ), with macro-scale soil behaviour. Through 1100 DEM simulations, this study reveals that, for uniform particle size distribution, the uncertainty in μ substantially affects large-strain soil behaviour, with its effect being associated with packing density and soil state. The uncertainty effect of μ remains pronounced at the critical state, while the packing density effect diminishes. Stress distribution appears insensitive to uncertainty of μ, rather suggesting a predominant influence of particle size distributions. In contrast, the uncertainty effect of μ becomes negligible on small-strain behaviour, demonstrating a limited effect on small-strain stiffness. Uncertainty in G p presents limited effects on large-strain behaviour, including stress ratios and dilatancy. At small strains, G p shows a significant impact on stiffness, diverging from minimal influence identified for μ. This study presents a framework that integrates experimental techniques to study particle-scale uncertainty propagation, enhancing predictions of macro-scale soil behaviour. This approach could be beneficial for precise multi-scale simulations, incorporating particle-level uncertainties in engineering-scale models, thereby improving geotechnical practice predictability.
doi_str_mv 10.1680/jgeot.23.00467
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1680_jgeot_23_00467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1680_jgeot_23_00467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c124t-61353563dc58832c2ef7f4c3fa98da159a993974fdc04740d874d7150737f5743</originalsourceid><addsrcrecordid>eNotkDtrwzAYRUVpoSHN2ll_wK5kvexuJfQFgS7tbBTpU6xiW0GSA_73ddJMd7j3nuEg9EhJSWVNnn4PEHJZsZIQLtUNWlElaKGkkLdoRQiVRS2IuEeblPz-vOFCEbZC81Yf8xT9eMC5Axz1aMOABzCdHr3RPd5Dp08-TBEHhw9LP_U64kFniF736RlrbMJwjNDBmPwJcMphOafsDbY-mQgZCuhhgDEv3NwFu0wmOz-gO7cAYHPNNfp5e_3efhS7r_fP7cuuMLTiuZCUCSYks0bUNatMBU45bpjTTW01FY1uGtYo7qwhXHFia8WtooIoppxQnK1R-c81MaQUwbXH6Acd55aS9uyuvbhrK9Ze3LE_n9llgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Capturing the random mechanical behaviour of granular materials: a comprehensive stochastic discrete-element method study</title><source>Institution of Civil Engineers</source><creator>Liu, DeYun ; Lyu, Meng-Ze</creator><creatorcontrib>Liu, DeYun ; Lyu, Meng-Ze</creatorcontrib><description>This research pioneers a stochastic discrete-element method (DEM) by integrating the probability density evolution method (PDEM), offering a novel approach to connect particle-scale property uncertainties, specifically inter-particle friction coefficient (μ) and particle shear modulus (G p ), with macro-scale soil behaviour. Through 1100 DEM simulations, this study reveals that, for uniform particle size distribution, the uncertainty in μ substantially affects large-strain soil behaviour, with its effect being associated with packing density and soil state. The uncertainty effect of μ remains pronounced at the critical state, while the packing density effect diminishes. Stress distribution appears insensitive to uncertainty of μ, rather suggesting a predominant influence of particle size distributions. In contrast, the uncertainty effect of μ becomes negligible on small-strain behaviour, demonstrating a limited effect on small-strain stiffness. Uncertainty in G p presents limited effects on large-strain behaviour, including stress ratios and dilatancy. At small strains, G p shows a significant impact on stiffness, diverging from minimal influence identified for μ. This study presents a framework that integrates experimental techniques to study particle-scale uncertainty propagation, enhancing predictions of macro-scale soil behaviour. This approach could be beneficial for precise multi-scale simulations, incorporating particle-level uncertainties in engineering-scale models, thereby improving geotechnical practice predictability.</description><identifier>ISSN: 0016-8505</identifier><identifier>EISSN: 1751-7656</identifier><identifier>DOI: 10.1680/jgeot.23.00467</identifier><language>eng</language><ispartof>Géotechnique, 2024-10, p.1-14</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c124t-61353563dc58832c2ef7f4c3fa98da159a993974fdc04740d874d7150737f5743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, DeYun</creatorcontrib><creatorcontrib>Lyu, Meng-Ze</creatorcontrib><title>Capturing the random mechanical behaviour of granular materials: a comprehensive stochastic discrete-element method study</title><title>Géotechnique</title><description>This research pioneers a stochastic discrete-element method (DEM) by integrating the probability density evolution method (PDEM), offering a novel approach to connect particle-scale property uncertainties, specifically inter-particle friction coefficient (μ) and particle shear modulus (G p ), with macro-scale soil behaviour. Through 1100 DEM simulations, this study reveals that, for uniform particle size distribution, the uncertainty in μ substantially affects large-strain soil behaviour, with its effect being associated with packing density and soil state. The uncertainty effect of μ remains pronounced at the critical state, while the packing density effect diminishes. Stress distribution appears insensitive to uncertainty of μ, rather suggesting a predominant influence of particle size distributions. In contrast, the uncertainty effect of μ becomes negligible on small-strain behaviour, demonstrating a limited effect on small-strain stiffness. Uncertainty in G p presents limited effects on large-strain behaviour, including stress ratios and dilatancy. At small strains, G p shows a significant impact on stiffness, diverging from minimal influence identified for μ. This study presents a framework that integrates experimental techniques to study particle-scale uncertainty propagation, enhancing predictions of macro-scale soil behaviour. This approach could be beneficial for precise multi-scale simulations, incorporating particle-level uncertainties in engineering-scale models, thereby improving geotechnical practice predictability.</description><issn>0016-8505</issn><issn>1751-7656</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkDtrwzAYRUVpoSHN2ll_wK5kvexuJfQFgS7tbBTpU6xiW0GSA_73ddJMd7j3nuEg9EhJSWVNnn4PEHJZsZIQLtUNWlElaKGkkLdoRQiVRS2IuEeblPz-vOFCEbZC81Yf8xT9eMC5Axz1aMOABzCdHr3RPd5Dp08-TBEHhw9LP_U64kFniF736RlrbMJwjNDBmPwJcMphOafsDbY-mQgZCuhhgDEv3NwFu0wmOz-gO7cAYHPNNfp5e_3efhS7r_fP7cuuMLTiuZCUCSYks0bUNatMBU45bpjTTW01FY1uGtYo7qwhXHFia8WtooIoppxQnK1R-c81MaQUwbXH6Acd55aS9uyuvbhrK9Ze3LE_n9llgw</recordid><startdate>20241010</startdate><enddate>20241010</enddate><creator>Liu, DeYun</creator><creator>Lyu, Meng-Ze</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241010</creationdate><title>Capturing the random mechanical behaviour of granular materials: a comprehensive stochastic discrete-element method study</title><author>Liu, DeYun ; Lyu, Meng-Ze</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c124t-61353563dc58832c2ef7f4c3fa98da159a993974fdc04740d874d7150737f5743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, DeYun</creatorcontrib><creatorcontrib>Lyu, Meng-Ze</creatorcontrib><collection>CrossRef</collection><jtitle>Géotechnique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, DeYun</au><au>Lyu, Meng-Ze</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capturing the random mechanical behaviour of granular materials: a comprehensive stochastic discrete-element method study</atitle><jtitle>Géotechnique</jtitle><date>2024-10-10</date><risdate>2024</risdate><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0016-8505</issn><eissn>1751-7656</eissn><abstract>This research pioneers a stochastic discrete-element method (DEM) by integrating the probability density evolution method (PDEM), offering a novel approach to connect particle-scale property uncertainties, specifically inter-particle friction coefficient (μ) and particle shear modulus (G p ), with macro-scale soil behaviour. Through 1100 DEM simulations, this study reveals that, for uniform particle size distribution, the uncertainty in μ substantially affects large-strain soil behaviour, with its effect being associated with packing density and soil state. The uncertainty effect of μ remains pronounced at the critical state, while the packing density effect diminishes. Stress distribution appears insensitive to uncertainty of μ, rather suggesting a predominant influence of particle size distributions. In contrast, the uncertainty effect of μ becomes negligible on small-strain behaviour, demonstrating a limited effect on small-strain stiffness. Uncertainty in G p presents limited effects on large-strain behaviour, including stress ratios and dilatancy. At small strains, G p shows a significant impact on stiffness, diverging from minimal influence identified for μ. This study presents a framework that integrates experimental techniques to study particle-scale uncertainty propagation, enhancing predictions of macro-scale soil behaviour. This approach could be beneficial for precise multi-scale simulations, incorporating particle-level uncertainties in engineering-scale models, thereby improving geotechnical practice predictability.</abstract><doi>10.1680/jgeot.23.00467</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-8505
ispartof Géotechnique, 2024-10, p.1-14
issn 0016-8505
1751-7656
language eng
recordid cdi_crossref_primary_10_1680_jgeot_23_00467
source Institution of Civil Engineers
title Capturing the random mechanical behaviour of granular materials: a comprehensive stochastic discrete-element method study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A18%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capturing%20the%20random%20mechanical%20behaviour%20of%20granular%20materials:%20a%20comprehensive%20stochastic%20discrete-element%20method%20study&rft.jtitle=G%C3%A9otechnique&rft.au=Liu,%20DeYun&rft.date=2024-10-10&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0016-8505&rft.eissn=1751-7656&rft_id=info:doi/10.1680/jgeot.23.00467&rft_dat=%3Ccrossref%3E10_1680_jgeot_23_00467%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true