Statistical models for prediction of dry weight and nitrogen accumulation based on visible and near-infrared hyper-spectral reflectance of rice canopies
Much information is obtainable from hyper-spectral data, which measure solar radiation consecutively at less than about 10-nm intervals. In constructing statistical prediction models, however, problems of overfitting may arise due to the excessive number of variables, and multicollinearity may occur...
Gespeichert in:
Veröffentlicht in: | Plant production science 2000, Vol.3 (4), p.377-386 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 386 |
---|---|
container_issue | 4 |
container_start_page | 377 |
container_title | Plant production science |
container_volume | 3 |
creator | Takahashi, W. (National Agriculture Research Center, Tsukuba, Ibaraki (Japan)) Nguyen-Cong, V Kawaguchi, S Minamiyama, M Ninomiya, S |
description | Much information is obtainable from hyper-spectral data, which measure solar radiation consecutively at less than about 10-nm intervals. In constructing statistical prediction models, however, problems of overfitting may arise due to the excessive number of variables, and multicollinearity may occur between variables ; thus a few specific wavelengths must be chosen. Various multivariate regression models were examined with ten-fold cross-validation to develop efficient, accurate models to predict dry weight and nitrogen accumulation of rice crops from the maximum tiller number stage to the meiosis stage, using plant-canopy reflectance of hyper-spectra within the 400-1100 nm domain without any variable selection. The results showed that the principal component regression using hyperspectra gave better fits and predictability than that using specific wavelengths. On the other hand, partial least squares regression was the most useful among the models tested ; this method avoided overfitting andmulticollinearity by using all wavelength information without variable selection and by inclusion of both x and y variations in its latent variables. |
doi_str_mv | 10.1626/pps.3.377 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1626_pps_3_377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cf811f88155a41e5875e7003b096c236</doaj_id><sourcerecordid>3115578791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5627-f55fcfdb5f023055103bcefdb1da4573df462d9e4e4d8be12564186605d278ac3</originalsourceid><addsrcrecordid>eNptkk2LFDEQhhtRcF09-AOEgCcPPSadj84cZfFjZUFBBW-hOqnMZunptJUel_kn_lyz07p48FRF8dRb4X3TNM8F3wjTmdfzXDZyI_v-QXMmpNq2gnP78NTLdqvk98fNk1JuOJeKG3XW_PqywJLKkjyMbJ8DjoXFTGwmDMkvKU8sRxboyG4x7a4XBlNgU1oo73Bi4P1hfxjhxA1QMLDa_EwlDSOuKAK1aYoEVZBdH2ektszoF6r3CONYW5g83l2hVKuHKc8Jy9PmUYSx4LM_9bz59u7t14sP7dWn95cXb65ar03Xt1Hr6GMYdOSd5FoLLgePdSACKN3LEJXpwhYVqmAHFJ02SlhjuA5db8HL8-Zy1Q0ZbtxMaQ90dBmSOw0y7RxQtWdE56MVIlortAYlUNteY1-dHPjW-E6aqvVy1Zop_zhgWdxNPtBUn--EUr2VQvNtpV6tlKdcSvXg_qrg7i5EV0N00tUQ_1GEUhOqNk4-lfsFa7jQqlJqparRmfZwm2kMboHjmOnvivyf-It1LUJ2sKNKffzccV6_jLSql78BH4S5TQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1447831509</pqid></control><display><type>article</type><title>Statistical models for prediction of dry weight and nitrogen accumulation based on visible and near-infrared hyper-spectral reflectance of rice canopies</title><source>J-STAGE (Free - Japanese)</source><source>Taylor & Francis</source><source>EZB Electronic Journals Library</source><creator>Takahashi, W. (National Agriculture Research Center, Tsukuba, Ibaraki (Japan)) ; Nguyen-Cong, V ; Kawaguchi, S ; Minamiyama, M ; Ninomiya, S</creator><creatorcontrib>Takahashi, W. (National Agriculture Research Center, Tsukuba, Ibaraki (Japan)) ; Nguyen-Cong, V ; Kawaguchi, S ; Minamiyama, M ; Ninomiya, S</creatorcontrib><description>Much information is obtainable from hyper-spectral data, which measure solar radiation consecutively at less than about 10-nm intervals. In constructing statistical prediction models, however, problems of overfitting may arise due to the excessive number of variables, and multicollinearity may occur between variables ; thus a few specific wavelengths must be chosen. Various multivariate regression models were examined with ten-fold cross-validation to develop efficient, accurate models to predict dry weight and nitrogen accumulation of rice crops from the maximum tiller number stage to the meiosis stage, using plant-canopy reflectance of hyper-spectra within the 400-1100 nm domain without any variable selection. The results showed that the principal component regression using hyperspectra gave better fits and predictability than that using specific wavelengths. On the other hand, partial least squares regression was the most useful among the models tested ; this method avoided overfitting andmulticollinearity by using all wavelength information without variable selection and by inclusion of both x and y variations in its latent variables.</description><identifier>ISSN: 1343-943X</identifier><identifier>EISSN: 1349-1008</identifier><identifier>DOI: 10.1626/pps.3.377</identifier><language>eng</language><publisher>Tokyo: Taylor & Francis</publisher><subject>Agronomy. Soil science and plant productions ; Biological and medical sciences ; Canopies ; CANOPY ; Cereal crops ; Cross-validation ; Dry weight ; FORECASTING ; Fundamental and applied biological sciences. Psychology ; General agronomy. Plant production ; Generalities. Agricultural and farming systems. Agricultural development ; Generalities. Production, biomass, yield. Quality ; Hyper-spectra ; INFRARED RADIATION ; IRRIGATED RICE ; MATHEMATICAL MODELS ; Nitrogen ; Nitrogen accumulation ; NITROGEN CONTENT ; PLS ; Prediction model ; Prediction models ; REFLECTANCE ; Rice ; Solar radiation ; Spectral measurement ; SPECTROMETRY ; STATISTICAL METHODS ; Statistical models ; Wavelengths ; WEIGHT</subject><ispartof>Plant production science, 2000, Vol.3 (4), p.377-386</ispartof><rights>2000 Crop Science Society of Japan 2000</rights><rights>2001 INIST-CNRS</rights><rights>Copyright Japan Science and Technology Agency 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5627-f55fcfdb5f023055103bcefdb1da4573df462d9e4e4d8be12564186605d278ac3</citedby><cites>FETCH-LOGICAL-c5627-f55fcfdb5f023055103bcefdb1da4573df462d9e4e4d8be12564186605d278ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1626/pps.3.377$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1626/pps.3.377$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27502,27923,27924,27925,59143,59144</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=860154$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Takahashi, W. (National Agriculture Research Center, Tsukuba, Ibaraki (Japan))</creatorcontrib><creatorcontrib>Nguyen-Cong, V</creatorcontrib><creatorcontrib>Kawaguchi, S</creatorcontrib><creatorcontrib>Minamiyama, M</creatorcontrib><creatorcontrib>Ninomiya, S</creatorcontrib><title>Statistical models for prediction of dry weight and nitrogen accumulation based on visible and near-infrared hyper-spectral reflectance of rice canopies</title><title>Plant production science</title><description>Much information is obtainable from hyper-spectral data, which measure solar radiation consecutively at less than about 10-nm intervals. In constructing statistical prediction models, however, problems of overfitting may arise due to the excessive number of variables, and multicollinearity may occur between variables ; thus a few specific wavelengths must be chosen. Various multivariate regression models were examined with ten-fold cross-validation to develop efficient, accurate models to predict dry weight and nitrogen accumulation of rice crops from the maximum tiller number stage to the meiosis stage, using plant-canopy reflectance of hyper-spectra within the 400-1100 nm domain without any variable selection. The results showed that the principal component regression using hyperspectra gave better fits and predictability than that using specific wavelengths. On the other hand, partial least squares regression was the most useful among the models tested ; this method avoided overfitting andmulticollinearity by using all wavelength information without variable selection and by inclusion of both x and y variations in its latent variables.</description><subject>Agronomy. Soil science and plant productions</subject><subject>Biological and medical sciences</subject><subject>Canopies</subject><subject>CANOPY</subject><subject>Cereal crops</subject><subject>Cross-validation</subject><subject>Dry weight</subject><subject>FORECASTING</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General agronomy. Plant production</subject><subject>Generalities. Agricultural and farming systems. Agricultural development</subject><subject>Generalities. Production, biomass, yield. Quality</subject><subject>Hyper-spectra</subject><subject>INFRARED RADIATION</subject><subject>IRRIGATED RICE</subject><subject>MATHEMATICAL MODELS</subject><subject>Nitrogen</subject><subject>Nitrogen accumulation</subject><subject>NITROGEN CONTENT</subject><subject>PLS</subject><subject>Prediction model</subject><subject>Prediction models</subject><subject>REFLECTANCE</subject><subject>Rice</subject><subject>Solar radiation</subject><subject>Spectral measurement</subject><subject>SPECTROMETRY</subject><subject>STATISTICAL METHODS</subject><subject>Statistical models</subject><subject>Wavelengths</subject><subject>WEIGHT</subject><issn>1343-943X</issn><issn>1349-1008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNptkk2LFDEQhhtRcF09-AOEgCcPPSadj84cZfFjZUFBBW-hOqnMZunptJUel_kn_lyz07p48FRF8dRb4X3TNM8F3wjTmdfzXDZyI_v-QXMmpNq2gnP78NTLdqvk98fNk1JuOJeKG3XW_PqywJLKkjyMbJ8DjoXFTGwmDMkvKU8sRxboyG4x7a4XBlNgU1oo73Bi4P1hfxjhxA1QMLDa_EwlDSOuKAK1aYoEVZBdH2ektszoF6r3CONYW5g83l2hVKuHKc8Jy9PmUYSx4LM_9bz59u7t14sP7dWn95cXb65ar03Xt1Hr6GMYdOSd5FoLLgePdSACKN3LEJXpwhYVqmAHFJ02SlhjuA5db8HL8-Zy1Q0ZbtxMaQ90dBmSOw0y7RxQtWdE56MVIlortAYlUNteY1-dHPjW-E6aqvVy1Zop_zhgWdxNPtBUn--EUr2VQvNtpV6tlKdcSvXg_qrg7i5EV0N00tUQ_1GEUhOqNk4-lfsFa7jQqlJqparRmfZwm2kMboHjmOnvivyf-It1LUJ2sKNKffzccV6_jLSql78BH4S5TQ</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Takahashi, W. (National Agriculture Research Center, Tsukuba, Ibaraki (Japan))</creator><creator>Nguyen-Cong, V</creator><creator>Kawaguchi, S</creator><creator>Minamiyama, M</creator><creator>Ninomiya, S</creator><general>Taylor & Francis</general><general>Crop Science Society of Japan</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>FBQ</scope><scope>0YH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>DOA</scope></search><sort><creationdate>2000</creationdate><title>Statistical models for prediction of dry weight and nitrogen accumulation based on visible and near-infrared hyper-spectral reflectance of rice canopies</title><author>Takahashi, W. (National Agriculture Research Center, Tsukuba, Ibaraki (Japan)) ; Nguyen-Cong, V ; Kawaguchi, S ; Minamiyama, M ; Ninomiya, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5627-f55fcfdb5f023055103bcefdb1da4573df462d9e4e4d8be12564186605d278ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>Biological and medical sciences</topic><topic>Canopies</topic><topic>CANOPY</topic><topic>Cereal crops</topic><topic>Cross-validation</topic><topic>Dry weight</topic><topic>FORECASTING</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General agronomy. Plant production</topic><topic>Generalities. Agricultural and farming systems. Agricultural development</topic><topic>Generalities. Production, biomass, yield. Quality</topic><topic>Hyper-spectra</topic><topic>INFRARED RADIATION</topic><topic>IRRIGATED RICE</topic><topic>MATHEMATICAL MODELS</topic><topic>Nitrogen</topic><topic>Nitrogen accumulation</topic><topic>NITROGEN CONTENT</topic><topic>PLS</topic><topic>Prediction model</topic><topic>Prediction models</topic><topic>REFLECTANCE</topic><topic>Rice</topic><topic>Solar radiation</topic><topic>Spectral measurement</topic><topic>SPECTROMETRY</topic><topic>STATISTICAL METHODS</topic><topic>Statistical models</topic><topic>Wavelengths</topic><topic>WEIGHT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takahashi, W. (National Agriculture Research Center, Tsukuba, Ibaraki (Japan))</creatorcontrib><creatorcontrib>Nguyen-Cong, V</creatorcontrib><creatorcontrib>Kawaguchi, S</creatorcontrib><creatorcontrib>Minamiyama, M</creatorcontrib><creatorcontrib>Ninomiya, S</creatorcontrib><collection>AGRIS</collection><collection>Taylor & Francis</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>Plant production science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takahashi, W. (National Agriculture Research Center, Tsukuba, Ibaraki (Japan))</au><au>Nguyen-Cong, V</au><au>Kawaguchi, S</au><au>Minamiyama, M</au><au>Ninomiya, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical models for prediction of dry weight and nitrogen accumulation based on visible and near-infrared hyper-spectral reflectance of rice canopies</atitle><jtitle>Plant production science</jtitle><date>2000</date><risdate>2000</risdate><volume>3</volume><issue>4</issue><spage>377</spage><epage>386</epage><pages>377-386</pages><issn>1343-943X</issn><eissn>1349-1008</eissn><abstract>Much information is obtainable from hyper-spectral data, which measure solar radiation consecutively at less than about 10-nm intervals. In constructing statistical prediction models, however, problems of overfitting may arise due to the excessive number of variables, and multicollinearity may occur between variables ; thus a few specific wavelengths must be chosen. Various multivariate regression models were examined with ten-fold cross-validation to develop efficient, accurate models to predict dry weight and nitrogen accumulation of rice crops from the maximum tiller number stage to the meiosis stage, using plant-canopy reflectance of hyper-spectra within the 400-1100 nm domain without any variable selection. The results showed that the principal component regression using hyperspectra gave better fits and predictability than that using specific wavelengths. On the other hand, partial least squares regression was the most useful among the models tested ; this method avoided overfitting andmulticollinearity by using all wavelength information without variable selection and by inclusion of both x and y variations in its latent variables.</abstract><cop>Tokyo</cop><pub>Taylor & Francis</pub><doi>10.1626/pps.3.377</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1343-943X |
ispartof | Plant production science, 2000, Vol.3 (4), p.377-386 |
issn | 1343-943X 1349-1008 |
language | eng |
recordid | cdi_crossref_primary_10_1626_pps_3_377 |
source | J-STAGE (Free - Japanese); Taylor & Francis; EZB Electronic Journals Library |
subjects | Agronomy. Soil science and plant productions Biological and medical sciences Canopies CANOPY Cereal crops Cross-validation Dry weight FORECASTING Fundamental and applied biological sciences. Psychology General agronomy. Plant production Generalities. Agricultural and farming systems. Agricultural development Generalities. Production, biomass, yield. Quality Hyper-spectra INFRARED RADIATION IRRIGATED RICE MATHEMATICAL MODELS Nitrogen Nitrogen accumulation NITROGEN CONTENT PLS Prediction model Prediction models REFLECTANCE Rice Solar radiation Spectral measurement SPECTROMETRY STATISTICAL METHODS Statistical models Wavelengths WEIGHT |
title | Statistical models for prediction of dry weight and nitrogen accumulation based on visible and near-infrared hyper-spectral reflectance of rice canopies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A40%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20models%20for%20prediction%20of%20dry%20weight%20and%20nitrogen%20accumulation%20based%20on%20visible%20and%20near-infrared%20hyper-spectral%20reflectance%20of%20rice%20canopies&rft.jtitle=Plant%20production%20science&rft.au=Takahashi,%20W.%20(National%20Agriculture%20Research%20Center,%20Tsukuba,%20Ibaraki%20(Japan))&rft.date=2000&rft.volume=3&rft.issue=4&rft.spage=377&rft.epage=386&rft.pages=377-386&rft.issn=1343-943X&rft.eissn=1349-1008&rft_id=info:doi/10.1626/pps.3.377&rft_dat=%3Cproquest_cross%3E3115578791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1447831509&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_cf811f88155a41e5875e7003b096c236&rfr_iscdi=true |