A Model to Support Collective Reasoning: Formalization, Analysis and Computational Assessment

In this paper we propose a new model to represent human debates and methods to obtain collective conclusions from them. This model overcomes two drawbacks of existing approaches. First, our model does not assume that participants agree on the structure of the debate. It does this by allowing partici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of artificial intelligence research 2023-01, Vol.77, p.1021-1086
Hauptverfasser: Ganzer, Jordi, Criado, Natalia, Lopez-Sanchez, Maite, Parsons, Simon, Rodriguez-Aguilar, Juan A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1086
container_issue
container_start_page 1021
container_title The Journal of artificial intelligence research
container_volume 77
creator Ganzer, Jordi
Criado, Natalia
Lopez-Sanchez, Maite
Parsons, Simon
Rodriguez-Aguilar, Juan A.
description In this paper we propose a new model to represent human debates and methods to obtain collective conclusions from them. This model overcomes two drawbacks of existing approaches. First, our model does not assume that participants agree on the structure of the debate. It does this by allowing participants to express their opinion about all aspects of the debate. Second, our model does not assume that participants’ opinions are rational, an assumption that significantly limits current approaches. Instead, we define a weaker notion of rationality that characterises coherent opinions, and we consider different scenarios based on the coherence of individual opinions and the level of consensus. We provide a formal analysis of different opinion aggregation functions that compute a collective decision based on the individual opinions and the debate structure. In particular, we demonstrate that aggregated opinions can be coherent even if there is a lack of consensus and individual opinions are not coherent. We conclude with an empirical evaluation demonstrating that collective opinions can be computed efficiently for real-sized debates.
doi_str_mv 10.1613/jair.1.14409
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1613_jair_1_14409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1613_jair_1_14409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-80227ec89361bfb1a3f8e5cc532e69912985019ab8e348bb4f84dbfb20d1951d3</originalsourceid><addsrcrecordid>eNpNkM1KxDAUhYMoOI7ufIA8wLTmJv1J3JXiqDAi-LOUkrapZEiTkmSE8entjC5cnQPnnMvlQ-gaSAoFsJut1D6FFLKMiBO0AFIWiSjz8vSfP0cXIWwJAZFRvkAfFX5yvTI4Ovy6mybnI66dMaqL-kvhFyWDs9p-3uK186M0-ltG7ewKV1aafdABS9vPi3HaxWMiDa5CUCGMysZLdDZIE9TVny7R-_rurX5INs_3j3W1STrKSEw4obRUHResgHZoQbKBq7zrckZVIQRQwfP5YdlyxTLettnAs34uUtKDyKFnS7T6vdt5F4JXQzN5PUq_b4A0BzTNAU0DzREN-wFkAFi6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Model to Support Collective Reasoning: Formalization, Analysis and Computational Assessment</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free E- Journals</source><creator>Ganzer, Jordi ; Criado, Natalia ; Lopez-Sanchez, Maite ; Parsons, Simon ; Rodriguez-Aguilar, Juan A.</creator><creatorcontrib>Ganzer, Jordi ; Criado, Natalia ; Lopez-Sanchez, Maite ; Parsons, Simon ; Rodriguez-Aguilar, Juan A.</creatorcontrib><description>In this paper we propose a new model to represent human debates and methods to obtain collective conclusions from them. This model overcomes two drawbacks of existing approaches. First, our model does not assume that participants agree on the structure of the debate. It does this by allowing participants to express their opinion about all aspects of the debate. Second, our model does not assume that participants’ opinions are rational, an assumption that significantly limits current approaches. Instead, we define a weaker notion of rationality that characterises coherent opinions, and we consider different scenarios based on the coherence of individual opinions and the level of consensus. We provide a formal analysis of different opinion aggregation functions that compute a collective decision based on the individual opinions and the debate structure. In particular, we demonstrate that aggregated opinions can be coherent even if there is a lack of consensus and individual opinions are not coherent. We conclude with an empirical evaluation demonstrating that collective opinions can be computed efficiently for real-sized debates.</description><identifier>ISSN: 1076-9757</identifier><identifier>EISSN: 1076-9757</identifier><identifier>DOI: 10.1613/jair.1.14409</identifier><language>eng</language><ispartof>The Journal of artificial intelligence research, 2023-01, Vol.77, p.1021-1086</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1838-5928 ; 0000-0002-2940-6886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Ganzer, Jordi</creatorcontrib><creatorcontrib>Criado, Natalia</creatorcontrib><creatorcontrib>Lopez-Sanchez, Maite</creatorcontrib><creatorcontrib>Parsons, Simon</creatorcontrib><creatorcontrib>Rodriguez-Aguilar, Juan A.</creatorcontrib><title>A Model to Support Collective Reasoning: Formalization, Analysis and Computational Assessment</title><title>The Journal of artificial intelligence research</title><description>In this paper we propose a new model to represent human debates and methods to obtain collective conclusions from them. This model overcomes two drawbacks of existing approaches. First, our model does not assume that participants agree on the structure of the debate. It does this by allowing participants to express their opinion about all aspects of the debate. Second, our model does not assume that participants’ opinions are rational, an assumption that significantly limits current approaches. Instead, we define a weaker notion of rationality that characterises coherent opinions, and we consider different scenarios based on the coherence of individual opinions and the level of consensus. We provide a formal analysis of different opinion aggregation functions that compute a collective decision based on the individual opinions and the debate structure. In particular, we demonstrate that aggregated opinions can be coherent even if there is a lack of consensus and individual opinions are not coherent. We conclude with an empirical evaluation demonstrating that collective opinions can be computed efficiently for real-sized debates.</description><issn>1076-9757</issn><issn>1076-9757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkM1KxDAUhYMoOI7ufIA8wLTmJv1J3JXiqDAi-LOUkrapZEiTkmSE8entjC5cnQPnnMvlQ-gaSAoFsJut1D6FFLKMiBO0AFIWiSjz8vSfP0cXIWwJAZFRvkAfFX5yvTI4Ovy6mybnI66dMaqL-kvhFyWDs9p-3uK186M0-ltG7ewKV1aafdABS9vPi3HaxWMiDa5CUCGMysZLdDZIE9TVny7R-_rurX5INs_3j3W1STrKSEw4obRUHResgHZoQbKBq7zrckZVIQRQwfP5YdlyxTLettnAs34uUtKDyKFnS7T6vdt5F4JXQzN5PUq_b4A0BzTNAU0DzREN-wFkAFi6</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Ganzer, Jordi</creator><creator>Criado, Natalia</creator><creator>Lopez-Sanchez, Maite</creator><creator>Parsons, Simon</creator><creator>Rodriguez-Aguilar, Juan A.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1838-5928</orcidid><orcidid>https://orcid.org/0000-0002-2940-6886</orcidid></search><sort><creationdate>20230101</creationdate><title>A Model to Support Collective Reasoning: Formalization, Analysis and Computational Assessment</title><author>Ganzer, Jordi ; Criado, Natalia ; Lopez-Sanchez, Maite ; Parsons, Simon ; Rodriguez-Aguilar, Juan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-80227ec89361bfb1a3f8e5cc532e69912985019ab8e348bb4f84dbfb20d1951d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganzer, Jordi</creatorcontrib><creatorcontrib>Criado, Natalia</creatorcontrib><creatorcontrib>Lopez-Sanchez, Maite</creatorcontrib><creatorcontrib>Parsons, Simon</creatorcontrib><creatorcontrib>Rodriguez-Aguilar, Juan A.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of artificial intelligence research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganzer, Jordi</au><au>Criado, Natalia</au><au>Lopez-Sanchez, Maite</au><au>Parsons, Simon</au><au>Rodriguez-Aguilar, Juan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Model to Support Collective Reasoning: Formalization, Analysis and Computational Assessment</atitle><jtitle>The Journal of artificial intelligence research</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>77</volume><spage>1021</spage><epage>1086</epage><pages>1021-1086</pages><issn>1076-9757</issn><eissn>1076-9757</eissn><abstract>In this paper we propose a new model to represent human debates and methods to obtain collective conclusions from them. This model overcomes two drawbacks of existing approaches. First, our model does not assume that participants agree on the structure of the debate. It does this by allowing participants to express their opinion about all aspects of the debate. Second, our model does not assume that participants’ opinions are rational, an assumption that significantly limits current approaches. Instead, we define a weaker notion of rationality that characterises coherent opinions, and we consider different scenarios based on the coherence of individual opinions and the level of consensus. We provide a formal analysis of different opinion aggregation functions that compute a collective decision based on the individual opinions and the debate structure. In particular, we demonstrate that aggregated opinions can be coherent even if there is a lack of consensus and individual opinions are not coherent. We conclude with an empirical evaluation demonstrating that collective opinions can be computed efficiently for real-sized debates.</abstract><doi>10.1613/jair.1.14409</doi><tpages>66</tpages><orcidid>https://orcid.org/0000-0002-1838-5928</orcidid><orcidid>https://orcid.org/0000-0002-2940-6886</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-9757
ispartof The Journal of artificial intelligence research, 2023-01, Vol.77, p.1021-1086
issn 1076-9757
1076-9757
language eng
recordid cdi_crossref_primary_10_1613_jair_1_14409
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free E- Journals
title A Model to Support Collective Reasoning: Formalization, Analysis and Computational Assessment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Model%20to%20Support%20Collective%20Reasoning:%20Formalization,%20Analysis%20and%20Computational%20Assessment&rft.jtitle=The%20Journal%20of%20artificial%20intelligence%20research&rft.au=Ganzer,%20Jordi&rft.date=2023-01-01&rft.volume=77&rft.spage=1021&rft.epage=1086&rft.pages=1021-1086&rft.issn=1076-9757&rft.eissn=1076-9757&rft_id=info:doi/10.1613/jair.1.14409&rft_dat=%3Ccrossref%3E10_1613_jair_1_14409%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true