Use of radial basis functions for meshless numerical solutions applied to financial engineering barrier options

A large number of financial engineering problems involve non-linear equations with non-linear or time-dependent boundary conditions. Despite available analytical solutions, many classical and modified forms of the well-known Black-Scholes (BS) equation require fast and accurate numerical solutions....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pesquisa Operacional 2009-08, Vol.29 (2), p.419-437
Hauptverfasser: Santos, Gisele Tessari, Souza, Maurício Cardoso de, Fortes, Mauri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 437
container_issue 2
container_start_page 419
container_title Pesquisa Operacional
container_volume 29
creator Santos, Gisele Tessari
Souza, Maurício Cardoso de
Fortes, Mauri
description A large number of financial engineering problems involve non-linear equations with non-linear or time-dependent boundary conditions. Despite available analytical solutions, many classical and modified forms of the well-known Black-Scholes (BS) equation require fast and accurate numerical solutions. This work introduces the radial basis function (RBF) method as applied to the solution of the BS equation with non-linear boundary conditions, related to path-dependent barrier options. Furthermore, the diffusional method for solving advective-diffusive equations is explored as to its effectiveness to solve BS equations. Cubic and Thin-Plate Spline (TPS) radial basis functions were employed and evaluated as to their effectiveness to solve barrier option problems. The numerical results, when compared against analytical solutions, allow affirming that the RBF method is very accurate and easy to be implemented. When the RBF method is applied, the diffusional method leads to the same results as those obtained from the classical formulation of Black-Scholes equation. Muitos problemas de engenharia financeira envolvem equações não-lineares com condições de contorno não-lineares ou dependentes do tempo. Apesar de soluções analíticas disponíveis, várias formas clássicas e modificadas da conhecida equação de Black-Scholes (BS) requerem soluções numéricas rápidas e acuradas. Este trabalho introduz o método de função de base radial (RBF) aplicado à solução da equação BS com condições de contorno não-lineares relacionadas a opções de barreira dependentes da trajetória. Além disso, explora-se o método difusional para solucionar equações advectivo-difusivas quanto à sua efetividade para solucionar equações BS. Utilizam-se funções de base radial Cúbica e Thin-Plate Spline (TPS), aplicadas à solução de problemas de opções de barreiras. Os resultados numéricos, quando comparados com as soluções analíticas, permitem afirmar que o método RBF é muito acurado e fácil de ser implementado. O método difusional associado ao método RBF leva aos mesmos resultados obtidos pela formulação clássica da equação de Black-Scholes.
doi_str_mv 10.1590/S0101-74382009000200009
format Article
fullrecord <record><control><sourceid>scielo_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1590_S0101_74382009000200009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S0101_74382009000200009</scielo_id><sourcerecordid>S0101_74382009000200009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2609-76d6906f5f06734aa9859ed83959449a2e84665be30332f05937fd97f2c6f103</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOKefwXyBzpumTZpHGf6DgQ_O55KlNzOjS0qyPvjtzVYRQXw6B-75nQuHkFsGC1YruHsDBqyQFW9KAAUAWbI5I7Ofw_kvf0muUtrllOQSZiS8J6TB0qg7p3u60cklakdvDi747EKke0wfPaZE_bjH6EyOpdCPU0APQ--wo4dArfPam2ML-q3zmLN-mxtjdBhpGE7ANbmwuk94861zsn58WC-fi9Xr08vyflWYUoAqpOiEAmFrC0LySmvV1Aq7hqtaVZXSJTaVEPUGOXBeWqgVl7ZT0pZGWAZ8ThZTbTIO-9Duwhh9_tee1mr_rJUBOQEmhpQi2naIbq_jZ8ugPe78L_kF6NtvDw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Use of radial basis functions for meshless numerical solutions applied to financial engineering barrier options</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Santos, Gisele Tessari ; Souza, Maurício Cardoso de ; Fortes, Mauri</creator><creatorcontrib>Santos, Gisele Tessari ; Souza, Maurício Cardoso de ; Fortes, Mauri</creatorcontrib><description>A large number of financial engineering problems involve non-linear equations with non-linear or time-dependent boundary conditions. Despite available analytical solutions, many classical and modified forms of the well-known Black-Scholes (BS) equation require fast and accurate numerical solutions. This work introduces the radial basis function (RBF) method as applied to the solution of the BS equation with non-linear boundary conditions, related to path-dependent barrier options. Furthermore, the diffusional method for solving advective-diffusive equations is explored as to its effectiveness to solve BS equations. Cubic and Thin-Plate Spline (TPS) radial basis functions were employed and evaluated as to their effectiveness to solve barrier option problems. The numerical results, when compared against analytical solutions, allow affirming that the RBF method is very accurate and easy to be implemented. When the RBF method is applied, the diffusional method leads to the same results as those obtained from the classical formulation of Black-Scholes equation. Muitos problemas de engenharia financeira envolvem equações não-lineares com condições de contorno não-lineares ou dependentes do tempo. Apesar de soluções analíticas disponíveis, várias formas clássicas e modificadas da conhecida equação de Black-Scholes (BS) requerem soluções numéricas rápidas e acuradas. Este trabalho introduz o método de função de base radial (RBF) aplicado à solução da equação BS com condições de contorno não-lineares relacionadas a opções de barreira dependentes da trajetória. Além disso, explora-se o método difusional para solucionar equações advectivo-difusivas quanto à sua efetividade para solucionar equações BS. Utilizam-se funções de base radial Cúbica e Thin-Plate Spline (TPS), aplicadas à solução de problemas de opções de barreiras. Os resultados numéricos, quando comparados com as soluções analíticas, permitem afirmar que o método RBF é muito acurado e fácil de ser implementado. O método difusional associado ao método RBF leva aos mesmos resultados obtidos pela formulação clássica da equação de Black-Scholes.</description><identifier>ISSN: 0101-7438</identifier><identifier>ISSN: 1678-5142</identifier><identifier>EISSN: 0101-7438</identifier><identifier>DOI: 10.1590/S0101-74382009000200009</identifier><language>eng</language><publisher>Sociedade Brasileira de Pesquisa Operacional</publisher><subject>OPERATIONS RESEARCH &amp; MANAGEMENT SCIENCE</subject><ispartof>Pesquisa Operacional, 2009-08, Vol.29 (2), p.419-437</ispartof><rights>This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2609-76d6906f5f06734aa9859ed83959449a2e84665be30332f05937fd97f2c6f103</citedby><cites>FETCH-LOGICAL-c2609-76d6906f5f06734aa9859ed83959449a2e84665be30332f05937fd97f2c6f103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Santos, Gisele Tessari</creatorcontrib><creatorcontrib>Souza, Maurício Cardoso de</creatorcontrib><creatorcontrib>Fortes, Mauri</creatorcontrib><title>Use of radial basis functions for meshless numerical solutions applied to financial engineering barrier options</title><title>Pesquisa Operacional</title><addtitle>Pesqui. Oper</addtitle><description>A large number of financial engineering problems involve non-linear equations with non-linear or time-dependent boundary conditions. Despite available analytical solutions, many classical and modified forms of the well-known Black-Scholes (BS) equation require fast and accurate numerical solutions. This work introduces the radial basis function (RBF) method as applied to the solution of the BS equation with non-linear boundary conditions, related to path-dependent barrier options. Furthermore, the diffusional method for solving advective-diffusive equations is explored as to its effectiveness to solve BS equations. Cubic and Thin-Plate Spline (TPS) radial basis functions were employed and evaluated as to their effectiveness to solve barrier option problems. The numerical results, when compared against analytical solutions, allow affirming that the RBF method is very accurate and easy to be implemented. When the RBF method is applied, the diffusional method leads to the same results as those obtained from the classical formulation of Black-Scholes equation. Muitos problemas de engenharia financeira envolvem equações não-lineares com condições de contorno não-lineares ou dependentes do tempo. Apesar de soluções analíticas disponíveis, várias formas clássicas e modificadas da conhecida equação de Black-Scholes (BS) requerem soluções numéricas rápidas e acuradas. Este trabalho introduz o método de função de base radial (RBF) aplicado à solução da equação BS com condições de contorno não-lineares relacionadas a opções de barreira dependentes da trajetória. Além disso, explora-se o método difusional para solucionar equações advectivo-difusivas quanto à sua efetividade para solucionar equações BS. Utilizam-se funções de base radial Cúbica e Thin-Plate Spline (TPS), aplicadas à solução de problemas de opções de barreiras. Os resultados numéricos, quando comparados com as soluções analíticas, permitem afirmar que o método RBF é muito acurado e fácil de ser implementado. O método difusional associado ao método RBF leva aos mesmos resultados obtidos pela formulação clássica da equação de Black-Scholes.</description><subject>OPERATIONS RESEARCH &amp; MANAGEMENT SCIENCE</subject><issn>0101-7438</issn><issn>1678-5142</issn><issn>0101-7438</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kF9LwzAUxYMoOKefwXyBzpumTZpHGf6DgQ_O55KlNzOjS0qyPvjtzVYRQXw6B-75nQuHkFsGC1YruHsDBqyQFW9KAAUAWbI5I7Ofw_kvf0muUtrllOQSZiS8J6TB0qg7p3u60cklakdvDi747EKke0wfPaZE_bjH6EyOpdCPU0APQ--wo4dArfPam2ML-q3zmLN-mxtjdBhpGE7ANbmwuk94861zsn58WC-fi9Xr08vyflWYUoAqpOiEAmFrC0LySmvV1Aq7hqtaVZXSJTaVEPUGOXBeWqgVl7ZT0pZGWAZ8ThZTbTIO-9Duwhh9_tee1mr_rJUBOQEmhpQi2naIbq_jZ8ugPe78L_kF6NtvDw</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Santos, Gisele Tessari</creator><creator>Souza, Maurício Cardoso de</creator><creator>Fortes, Mauri</creator><general>Sociedade Brasileira de Pesquisa Operacional</general><scope>AAYXX</scope><scope>CITATION</scope><scope>GPN</scope></search><sort><creationdate>20090801</creationdate><title>Use of radial basis functions for meshless numerical solutions applied to financial engineering barrier options</title><author>Santos, Gisele Tessari ; Souza, Maurício Cardoso de ; Fortes, Mauri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2609-76d6906f5f06734aa9859ed83959449a2e84665be30332f05937fd97f2c6f103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>OPERATIONS RESEARCH &amp; MANAGEMENT SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, Gisele Tessari</creatorcontrib><creatorcontrib>Souza, Maurício Cardoso de</creatorcontrib><creatorcontrib>Fortes, Mauri</creatorcontrib><collection>CrossRef</collection><collection>SciELO</collection><jtitle>Pesquisa Operacional</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, Gisele Tessari</au><au>Souza, Maurício Cardoso de</au><au>Fortes, Mauri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of radial basis functions for meshless numerical solutions applied to financial engineering barrier options</atitle><jtitle>Pesquisa Operacional</jtitle><addtitle>Pesqui. Oper</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>29</volume><issue>2</issue><spage>419</spage><epage>437</epage><pages>419-437</pages><issn>0101-7438</issn><issn>1678-5142</issn><eissn>0101-7438</eissn><abstract>A large number of financial engineering problems involve non-linear equations with non-linear or time-dependent boundary conditions. Despite available analytical solutions, many classical and modified forms of the well-known Black-Scholes (BS) equation require fast and accurate numerical solutions. This work introduces the radial basis function (RBF) method as applied to the solution of the BS equation with non-linear boundary conditions, related to path-dependent barrier options. Furthermore, the diffusional method for solving advective-diffusive equations is explored as to its effectiveness to solve BS equations. Cubic and Thin-Plate Spline (TPS) radial basis functions were employed and evaluated as to their effectiveness to solve barrier option problems. The numerical results, when compared against analytical solutions, allow affirming that the RBF method is very accurate and easy to be implemented. When the RBF method is applied, the diffusional method leads to the same results as those obtained from the classical formulation of Black-Scholes equation. Muitos problemas de engenharia financeira envolvem equações não-lineares com condições de contorno não-lineares ou dependentes do tempo. Apesar de soluções analíticas disponíveis, várias formas clássicas e modificadas da conhecida equação de Black-Scholes (BS) requerem soluções numéricas rápidas e acuradas. Este trabalho introduz o método de função de base radial (RBF) aplicado à solução da equação BS com condições de contorno não-lineares relacionadas a opções de barreira dependentes da trajetória. Além disso, explora-se o método difusional para solucionar equações advectivo-difusivas quanto à sua efetividade para solucionar equações BS. Utilizam-se funções de base radial Cúbica e Thin-Plate Spline (TPS), aplicadas à solução de problemas de opções de barreiras. Os resultados numéricos, quando comparados com as soluções analíticas, permitem afirmar que o método RBF é muito acurado e fácil de ser implementado. O método difusional associado ao método RBF leva aos mesmos resultados obtidos pela formulação clássica da equação de Black-Scholes.</abstract><pub>Sociedade Brasileira de Pesquisa Operacional</pub><doi>10.1590/S0101-74382009000200009</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0101-7438
ispartof Pesquisa Operacional, 2009-08, Vol.29 (2), p.419-437
issn 0101-7438
1678-5142
0101-7438
language eng
recordid cdi_crossref_primary_10_1590_S0101_74382009000200009
source EZB-FREE-00999 freely available EZB journals
subjects OPERATIONS RESEARCH & MANAGEMENT SCIENCE
title Use of radial basis functions for meshless numerical solutions applied to financial engineering barrier options
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A15%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scielo_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20radial%20basis%20functions%20for%20meshless%20numerical%20solutions%20applied%20to%20financial%20engineering%20barrier%20options&rft.jtitle=Pesquisa%20Operacional&rft.au=Santos,%20Gisele%20Tessari&rft.date=2009-08-01&rft.volume=29&rft.issue=2&rft.spage=419&rft.epage=437&rft.pages=419-437&rft.issn=0101-7438&rft.eissn=0101-7438&rft_id=info:doi/10.1590/S0101-74382009000200009&rft_dat=%3Cscielo_cross%3ES0101_74382009000200009%3C/scielo_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_scielo_id=S0101_74382009000200009&rfr_iscdi=true