A Deep Learning Based Glioma Tumour Detection Using Efficient Visual Geometry Group Convolutional Neural Networks Architecture

Abstract The detection and segmentation of tumor regions in brain Magnetic Resonance Imaging (MRI) plays important aspects for last two decades. In this paper, Efficient Visual Geometry Group Convolutional Neural Networks Architecture is proposed for brain tumor detection which consists of pre-proce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brazilian Archives of Biology and Technology 2024, Vol.67
Hauptverfasser: Alagarsamy, Parameswari, Sridharan, Bhavani, Kalimuthu, Vinoth Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Brazilian Archives of Biology and Technology
container_volume 67
creator Alagarsamy, Parameswari
Sridharan, Bhavani
Kalimuthu, Vinoth Kumar
description Abstract The detection and segmentation of tumor regions in brain Magnetic Resonance Imaging (MRI) plays important aspects for last two decades. In this paper, Efficient Visual Geometry Group Convolutional Neural Networks Architecture is proposed for brain tumor detection which consists of pre-processing module, DWT module, and Classification module along with segmentation. The scaling based data augmentation methods are used as the pre-processing technique and the data augmented scaled images are decomposed using DWT Transform. The Wavelet feature maps are constructed from these decomposed coefficients and they are classified using EVGG-CNN architecture. This proposed architecture identifies the brain image into either Glioma or healthy brain image. The effectiveness of these developed methods stated in this work is verified by applying the proposed method on the brain images from BRATS 2021 and Kaggle dataset. The performance of proposed EVGG-CNN architecture is analyzed in terms of sensitivity, specificity and accuracy.
doi_str_mv 10.1590/1678-4324-2024230705
format Article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1590_1678_4324_2024230705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3120351aa8c5401380d7a2dfe6cb23a6</doaj_id><sourcerecordid>oai_doaj_org_article_3120351aa8c5401380d7a2dfe6cb23a6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-87ffb57029c124d1fd81349b39a9bff7114d75a0430970572653f046c3e6b8473</originalsourceid><addsrcrecordid>eNpFkc9OwzAMxiMEEmPwBhzyAoX8bdrjGKNMmuCycY3SNBkZbTMlLWgXnp12Q3D6rM_2z7INwC1Gd5jn6B6nIksYJSwhiDBCkUD8DEz-7PMh5jhNshzTS3AV4w4hzFLMJuB7Bh-N2cOVUaF17RY-qGgqWNTONwqu-8b3YajojO6cb-EmjjULa512pu3gm4u9qmFhfGO6cIBF8P0ezn376et-7BiSL6YPR-m-fPiIcBb0uxuBfTDX4MKqOpqbX52CzdNiPX9OVq_Fcj5bJZpy3CWZsLbkApFcY8IqbKsMU5aXNFd5aa3AmFWCK8QoyofdBUk5tYilmpq0zJigU7A8cSuvdnIfXKPCQXrl5NHwYStV6JyujaSYoGGoUpnmDGGaoUooUlmT6pJQlQ4sdmLp4GMMxv7xMJLjP-R4eDkeXv7_g_4AlB19zQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Deep Learning Based Glioma Tumour Detection Using Efficient Visual Geometry Group Convolutional Neural Networks Architecture</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Alagarsamy, Parameswari ; Sridharan, Bhavani ; Kalimuthu, Vinoth Kumar</creator><creatorcontrib>Alagarsamy, Parameswari ; Sridharan, Bhavani ; Kalimuthu, Vinoth Kumar</creatorcontrib><description>Abstract The detection and segmentation of tumor regions in brain Magnetic Resonance Imaging (MRI) plays important aspects for last two decades. In this paper, Efficient Visual Geometry Group Convolutional Neural Networks Architecture is proposed for brain tumor detection which consists of pre-processing module, DWT module, and Classification module along with segmentation. The scaling based data augmentation methods are used as the pre-processing technique and the data augmented scaled images are decomposed using DWT Transform. The Wavelet feature maps are constructed from these decomposed coefficients and they are classified using EVGG-CNN architecture. This proposed architecture identifies the brain image into either Glioma or healthy brain image. The effectiveness of these developed methods stated in this work is verified by applying the proposed method on the brain images from BRATS 2021 and Kaggle dataset. The performance of proposed EVGG-CNN architecture is analyzed in terms of sensitivity, specificity and accuracy.</description><identifier>ISSN: 1516-8913</identifier><identifier>EISSN: 1678-4324</identifier><identifier>DOI: 10.1590/1678-4324-2024230705</identifier><language>eng</language><publisher>Instituto de Tecnologia do Paraná (Tecpar)</publisher><subject>CNN ; EVGG-CNN ; Glioma, brain tumors ; Magnetic Resonance Imaging ; VGG</subject><ispartof>Brazilian Archives of Biology and Technology, 2024, Vol.67</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c351t-87ffb57029c124d1fd81349b39a9bff7114d75a0430970572653f046c3e6b8473</cites><orcidid>0000-0002-3463-0014 ; 0000-0002-8920-4936 ; 0000-0003-2181-6300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Alagarsamy, Parameswari</creatorcontrib><creatorcontrib>Sridharan, Bhavani</creatorcontrib><creatorcontrib>Kalimuthu, Vinoth Kumar</creatorcontrib><title>A Deep Learning Based Glioma Tumour Detection Using Efficient Visual Geometry Group Convolutional Neural Networks Architecture</title><title>Brazilian Archives of Biology and Technology</title><description>Abstract The detection and segmentation of tumor regions in brain Magnetic Resonance Imaging (MRI) plays important aspects for last two decades. In this paper, Efficient Visual Geometry Group Convolutional Neural Networks Architecture is proposed for brain tumor detection which consists of pre-processing module, DWT module, and Classification module along with segmentation. The scaling based data augmentation methods are used as the pre-processing technique and the data augmented scaled images are decomposed using DWT Transform. The Wavelet feature maps are constructed from these decomposed coefficients and they are classified using EVGG-CNN architecture. This proposed architecture identifies the brain image into either Glioma or healthy brain image. The effectiveness of these developed methods stated in this work is verified by applying the proposed method on the brain images from BRATS 2021 and Kaggle dataset. The performance of proposed EVGG-CNN architecture is analyzed in terms of sensitivity, specificity and accuracy.</description><subject>CNN</subject><subject>EVGG-CNN</subject><subject>Glioma, brain tumors</subject><subject>Magnetic Resonance Imaging</subject><subject>VGG</subject><issn>1516-8913</issn><issn>1678-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpFkc9OwzAMxiMEEmPwBhzyAoX8bdrjGKNMmuCycY3SNBkZbTMlLWgXnp12Q3D6rM_2z7INwC1Gd5jn6B6nIksYJSwhiDBCkUD8DEz-7PMh5jhNshzTS3AV4w4hzFLMJuB7Bh-N2cOVUaF17RY-qGgqWNTONwqu-8b3YajojO6cb-EmjjULa512pu3gm4u9qmFhfGO6cIBF8P0ezn376et-7BiSL6YPR-m-fPiIcBb0uxuBfTDX4MKqOpqbX52CzdNiPX9OVq_Fcj5bJZpy3CWZsLbkApFcY8IqbKsMU5aXNFd5aa3AmFWCK8QoyofdBUk5tYilmpq0zJigU7A8cSuvdnIfXKPCQXrl5NHwYStV6JyujaSYoGGoUpnmDGGaoUooUlmT6pJQlQ4sdmLp4GMMxv7xMJLjP-R4eDkeXv7_g_4AlB19zQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Alagarsamy, Parameswari</creator><creator>Sridharan, Bhavani</creator><creator>Kalimuthu, Vinoth Kumar</creator><general>Instituto de Tecnologia do Paraná (Tecpar)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3463-0014</orcidid><orcidid>https://orcid.org/0000-0002-8920-4936</orcidid><orcidid>https://orcid.org/0000-0003-2181-6300</orcidid></search><sort><creationdate>2024</creationdate><title>A Deep Learning Based Glioma Tumour Detection Using Efficient Visual Geometry Group Convolutional Neural Networks Architecture</title><author>Alagarsamy, Parameswari ; Sridharan, Bhavani ; Kalimuthu, Vinoth Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-87ffb57029c124d1fd81349b39a9bff7114d75a0430970572653f046c3e6b8473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CNN</topic><topic>EVGG-CNN</topic><topic>Glioma, brain tumors</topic><topic>Magnetic Resonance Imaging</topic><topic>VGG</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alagarsamy, Parameswari</creatorcontrib><creatorcontrib>Sridharan, Bhavani</creatorcontrib><creatorcontrib>Kalimuthu, Vinoth Kumar</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Brazilian Archives of Biology and Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alagarsamy, Parameswari</au><au>Sridharan, Bhavani</au><au>Kalimuthu, Vinoth Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Learning Based Glioma Tumour Detection Using Efficient Visual Geometry Group Convolutional Neural Networks Architecture</atitle><jtitle>Brazilian Archives of Biology and Technology</jtitle><date>2024</date><risdate>2024</risdate><volume>67</volume><issn>1516-8913</issn><eissn>1678-4324</eissn><abstract>Abstract The detection and segmentation of tumor regions in brain Magnetic Resonance Imaging (MRI) plays important aspects for last two decades. In this paper, Efficient Visual Geometry Group Convolutional Neural Networks Architecture is proposed for brain tumor detection which consists of pre-processing module, DWT module, and Classification module along with segmentation. The scaling based data augmentation methods are used as the pre-processing technique and the data augmented scaled images are decomposed using DWT Transform. The Wavelet feature maps are constructed from these decomposed coefficients and they are classified using EVGG-CNN architecture. This proposed architecture identifies the brain image into either Glioma or healthy brain image. The effectiveness of these developed methods stated in this work is verified by applying the proposed method on the brain images from BRATS 2021 and Kaggle dataset. The performance of proposed EVGG-CNN architecture is analyzed in terms of sensitivity, specificity and accuracy.</abstract><pub>Instituto de Tecnologia do Paraná (Tecpar)</pub><doi>10.1590/1678-4324-2024230705</doi><orcidid>https://orcid.org/0000-0002-3463-0014</orcidid><orcidid>https://orcid.org/0000-0002-8920-4936</orcidid><orcidid>https://orcid.org/0000-0003-2181-6300</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1516-8913
ispartof Brazilian Archives of Biology and Technology, 2024, Vol.67
issn 1516-8913
1678-4324
language eng
recordid cdi_crossref_primary_10_1590_1678_4324_2024230705
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects CNN
EVGG-CNN
Glioma, brain tumors
Magnetic Resonance Imaging
VGG
title A Deep Learning Based Glioma Tumour Detection Using Efficient Visual Geometry Group Convolutional Neural Networks Architecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A38%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Learning%20Based%20Glioma%20Tumour%20Detection%20Using%20Efficient%20Visual%20Geometry%20Group%20Convolutional%20Neural%20Networks%20Architecture&rft.jtitle=Brazilian%20Archives%20of%20Biology%20and%20Technology&rft.au=Alagarsamy,%20Parameswari&rft.date=2024&rft.volume=67&rft.issn=1516-8913&rft.eissn=1678-4324&rft_id=info:doi/10.1590/1678-4324-2024230705&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_3120351aa8c5401380d7a2dfe6cb23a6%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_3120351aa8c5401380d7a2dfe6cb23a6&rfr_iscdi=true