Privacy-Preserving Logistic Regression with Distributed Data Sources via Homomorphic Encryption

Logistic regression is a powerful machine learning tool to classify data. When dealing with sensitive or private data, cares are necessary. In this paper, we propose a secure system for privacy-protecting both the training and predicting data in logistic regression via homomorphic encryption. Perhap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2016/08/01, Vol.E99.D(8), pp.2079-2089
Hauptverfasser: AONO, Yoshinori, HAYASHI, Takuya, PHONG, Le Trieu, WANG, Lihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!