Privacy-Preserving Logistic Regression with Distributed Data Sources via Homomorphic Encryption
Logistic regression is a powerful machine learning tool to classify data. When dealing with sensitive or private data, cares are necessary. In this paper, we propose a secure system for privacy-protecting both the training and predicting data in logistic regression via homomorphic encryption. Perhap...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2016/08/01, Vol.E99.D(8), pp.2079-2089 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!