DNN-Based Voice Activity Detection with Multi-Task Learning

Recently, notable improvements in voice activity detection (VAD) problem have been achieved by adopting several machine learning techniques. Among them, the deep neural network (DNN) which learns the mapping between the noisy speech features and the corresponding voice activity status with its deep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2016/02/01, Vol.E99.D(2), pp.550-553
Hauptverfasser: KANG, Tae Gyoon, KIM, Nam Soo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 553
container_issue 2
container_start_page 550
container_title IEICE Transactions on Information and Systems
container_volume E99.D
creator KANG, Tae Gyoon
KIM, Nam Soo
description Recently, notable improvements in voice activity detection (VAD) problem have been achieved by adopting several machine learning techniques. Among them, the deep neural network (DNN) which learns the mapping between the noisy speech features and the corresponding voice activity status with its deep hidden structure has been one of the most popular techniques. In this letter, we propose a novel approach which enhances the robustness of DNN in mismatched noise conditions with multi-task learning (MTL) framework. In the proposed algorithm, a feature enhancement task for speech features is jointly trained with the conventional VAD task. The experimental results show that the DNN with the proposed framework outperforms the conventional DNN-based VAD algorithm.
doi_str_mv 10.1587/transinf.2015EDL8168
format Article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1587_transinf_2015EDL8168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_transinf_E99_D_2_E99_D_2015EDL8168_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-d254c1384a97c23d319be5032faa44268e8635ce8d99c54bddd78f94f0ff37e03</originalsourceid><addsrcrecordid>eNpNkMtOAjEARRujiSP6By7mB4p9zrRxhQw-khFdoNum9AFFHExbNfy9GARc3bu45y4OAJcY9TEX9VWOukuh832CMB81rcCVOAIFrhmHmFb4GBRI4goKTskpOEtpgRAWBPMCXDfjMbzRydnydRWMKwcmh6-Q12Xjstv0VVd-hzwvHz-XOcCJTm9l63TsQjc7BydeL5O7-MseeLkdTYb3sH26exgOWmgYrTK0hDODqWBa1oZQS7GcOo4o8VozRirhREW5ccJKaTibWmtr4SXzyHtaO0R7gG1_TVylFJ1XHzG867hWGKlfAWonQP0TsMGet9giZT1ze0jHHMzSHaCRlKpRZJeHi_3UzHVUrqM_XNRtLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DNN-Based Voice Activity Detection with Multi-Task Learning</title><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>KANG, Tae Gyoon ; KIM, Nam Soo</creator><creatorcontrib>KANG, Tae Gyoon ; KIM, Nam Soo</creatorcontrib><description>Recently, notable improvements in voice activity detection (VAD) problem have been achieved by adopting several machine learning techniques. Among them, the deep neural network (DNN) which learns the mapping between the noisy speech features and the corresponding voice activity status with its deep hidden structure has been one of the most popular techniques. In this letter, we propose a novel approach which enhances the robustness of DNN in mismatched noise conditions with multi-task learning (MTL) framework. In the proposed algorithm, a feature enhancement task for speech features is jointly trained with the conventional VAD task. The experimental results show that the DNN with the proposed framework outperforms the conventional DNN-based VAD algorithm.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2015EDL8168</identifier><language>eng</language><publisher>The Institute of Electronics, Information and Communication Engineers</publisher><subject>deep neural network ; multi-task learning ; voice activity detection</subject><ispartof>IEICE Transactions on Information and Systems, 2016/02/01, Vol.E99.D(2), pp.550-553</ispartof><rights>2016 The Institute of Electronics, Information and Communication Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-d254c1384a97c23d319be5032faa44268e8635ce8d99c54bddd78f94f0ff37e03</citedby><cites>FETCH-LOGICAL-c436t-d254c1384a97c23d319be5032faa44268e8635ce8d99c54bddd78f94f0ff37e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>KANG, Tae Gyoon</creatorcontrib><creatorcontrib>KIM, Nam Soo</creatorcontrib><title>DNN-Based Voice Activity Detection with Multi-Task Learning</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><description>Recently, notable improvements in voice activity detection (VAD) problem have been achieved by adopting several machine learning techniques. Among them, the deep neural network (DNN) which learns the mapping between the noisy speech features and the corresponding voice activity status with its deep hidden structure has been one of the most popular techniques. In this letter, we propose a novel approach which enhances the robustness of DNN in mismatched noise conditions with multi-task learning (MTL) framework. In the proposed algorithm, a feature enhancement task for speech features is jointly trained with the conventional VAD task. The experimental results show that the DNN with the proposed framework outperforms the conventional DNN-based VAD algorithm.</description><subject>deep neural network</subject><subject>multi-task learning</subject><subject>voice activity detection</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOAjEARRujiSP6By7mB4p9zrRxhQw-khFdoNum9AFFHExbNfy9GARc3bu45y4OAJcY9TEX9VWOukuh832CMB81rcCVOAIFrhmHmFb4GBRI4goKTskpOEtpgRAWBPMCXDfjMbzRydnydRWMKwcmh6-Q12Xjstv0VVd-hzwvHz-XOcCJTm9l63TsQjc7BydeL5O7-MseeLkdTYb3sH26exgOWmgYrTK0hDODqWBa1oZQS7GcOo4o8VozRirhREW5ccJKaTibWmtr4SXzyHtaO0R7gG1_TVylFJ1XHzG867hWGKlfAWonQP0TsMGet9giZT1ze0jHHMzSHaCRlKpRZJeHi_3UzHVUrqM_XNRtLQ</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>KANG, Tae Gyoon</creator><creator>KIM, Nam Soo</creator><general>The Institute of Electronics, Information and Communication Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160201</creationdate><title>DNN-Based Voice Activity Detection with Multi-Task Learning</title><author>KANG, Tae Gyoon ; KIM, Nam Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-d254c1384a97c23d319be5032faa44268e8635ce8d99c54bddd78f94f0ff37e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>deep neural network</topic><topic>multi-task learning</topic><topic>voice activity detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KANG, Tae Gyoon</creatorcontrib><creatorcontrib>KIM, Nam Soo</creatorcontrib><collection>CrossRef</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KANG, Tae Gyoon</au><au>KIM, Nam Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNN-Based Voice Activity Detection with Multi-Task Learning</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>E99.D</volume><issue>2</issue><spage>550</spage><epage>553</epage><pages>550-553</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>Recently, notable improvements in voice activity detection (VAD) problem have been achieved by adopting several machine learning techniques. Among them, the deep neural network (DNN) which learns the mapping between the noisy speech features and the corresponding voice activity status with its deep hidden structure has been one of the most popular techniques. In this letter, we propose a novel approach which enhances the robustness of DNN in mismatched noise conditions with multi-task learning (MTL) framework. In the proposed algorithm, a feature enhancement task for speech features is jointly trained with the conventional VAD task. The experimental results show that the DNN with the proposed framework outperforms the conventional DNN-based VAD algorithm.</abstract><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2015EDL8168</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-8532
ispartof IEICE Transactions on Information and Systems, 2016/02/01, Vol.E99.D(2), pp.550-553
issn 0916-8532
1745-1361
language eng
recordid cdi_crossref_primary_10_1587_transinf_2015EDL8168
source J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; EZB-FREE-00999 freely available EZB journals
subjects deep neural network
multi-task learning
voice activity detection
title DNN-Based Voice Activity Detection with Multi-Task Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNN-Based%20Voice%20Activity%20Detection%20with%20Multi-Task%20Learning&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=KANG,%20Tae%20Gyoon&rft.date=2016-02-01&rft.volume=E99.D&rft.issue=2&rft.spage=550&rft.epage=553&rft.pages=550-553&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2015EDL8168&rft_dat=%3Cjstage_cross%3Earticle_transinf_E99_D_2_E99_D_2015EDL8168_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true