Nonnegative Component Representation with Hierarchical Dictionary Learning Strategy for Action Recognition

Nonnegative component representation (NCR) is a mid-level representation based on nonnegative matrix factorization (NMF). Recently, it has attached much attention and achieved encouraging result for action recognition. In this paper, we propose a novel hierarchical dictionary learning strategy (HDLS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2016/04/01, Vol.E99.D(4), pp.1259-1263
Hauptverfasser: WANG, Jianhong, ZHANG, Pinzheng, LUO, Linmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1263
container_issue 4
container_start_page 1259
container_title IEICE Transactions on Information and Systems
container_volume E99.D
creator WANG, Jianhong
ZHANG, Pinzheng
LUO, Linmin
description Nonnegative component representation (NCR) is a mid-level representation based on nonnegative matrix factorization (NMF). Recently, it has attached much attention and achieved encouraging result for action recognition. In this paper, we propose a novel hierarchical dictionary learning strategy (HDLS) for NMF to improve the performance of NCR. Considering the variability of action classes, HDLS clusters the similar classes into groups and forms a two-layer hierarchical class model. The groups in the first layer are disjoint, while in the second layer, the classes in each group are correlated. HDLS takes account of the differences between two layers and proposes to use different dictionary learning methods for this two layers, including the discriminant class-specific NMF for the first layer and the discriminant joint dictionary NMF for the second layer. The proposed approach is extensively tested on three public datasets and the experimental results demonstrate the effectiveness and superiority of NCR with HDLS for large-scale action recognition.
doi_str_mv 10.1587/transinf.2015EDL8164
format Article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1587_transinf_2015EDL8164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_transinf_E99_D_4_E99_D_2015EDL8164_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-b3c01e395e6229e6ffd1858590891ba3973c748a6b08cf8ada33ece47b385c013</originalsourceid><addsrcrecordid>eNpNkN1OAjEUhBujiYi-gRd9gcV2u-22lwRQTDZq_LluuuXsUgJd0jYa3t5FULmaSeZ8k5NB6JaSEeWyvEvB-Oh8M8oJ5bNpJakoztCAlgXPKBP0HA2IoiKTnOWX6CrGFSFU5pQP0Oqp8x5ak9wn4Em32XYefMKvsA0Qe9cHncdfLi3x3EEwwS6dNWs8dXafmLDDFZjgnW_xW_9HgnaHmy7g8U_eF9mu9W7vr9FFY9YRbo46RB_3s_fJPKueHx4n4yqzBRMpq5klFJjiIPJcgWiaBZVcckWkorVhqmS2LKQRNZG2kWZhGAMLRVkzyXuUDVFx6LWhizFAo7fBbfpPNSV6v5f-3Uuf7NVjLwdsFZNp4Q8yITm7hn9oppSe6uKoJxV_p3ZpggbPvgFjTYBT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonnegative Component Representation with Hierarchical Dictionary Learning Strategy for Action Recognition</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>WANG, Jianhong ; ZHANG, Pinzheng ; LUO, Linmin</creator><creatorcontrib>WANG, Jianhong ; ZHANG, Pinzheng ; LUO, Linmin</creatorcontrib><description>Nonnegative component representation (NCR) is a mid-level representation based on nonnegative matrix factorization (NMF). Recently, it has attached much attention and achieved encouraging result for action recognition. In this paper, we propose a novel hierarchical dictionary learning strategy (HDLS) for NMF to improve the performance of NCR. Considering the variability of action classes, HDLS clusters the similar classes into groups and forms a two-layer hierarchical class model. The groups in the first layer are disjoint, while in the second layer, the classes in each group are correlated. HDLS takes account of the differences between two layers and proposes to use different dictionary learning methods for this two layers, including the discriminant class-specific NMF for the first layer and the discriminant joint dictionary NMF for the second layer. The proposed approach is extensively tested on three public datasets and the experimental results demonstrate the effectiveness and superiority of NCR with HDLS for large-scale action recognition.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2015EDL8164</identifier><language>eng</language><publisher>The Institute of Electronics, Information and Communication Engineers</publisher><subject>action recognition ; hierarchical dictionary learning strategy ; nonnegative component representation ; nonnegative matrix factorization</subject><ispartof>IEICE Transactions on Information and Systems, 2016/04/01, Vol.E99.D(4), pp.1259-1263</ispartof><rights>2016 The Institute of Electronics, Information and Communication Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-b3c01e395e6229e6ffd1858590891ba3973c748a6b08cf8ada33ece47b385c013</citedby><cites>FETCH-LOGICAL-c436t-b3c01e395e6229e6ffd1858590891ba3973c748a6b08cf8ada33ece47b385c013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>WANG, Jianhong</creatorcontrib><creatorcontrib>ZHANG, Pinzheng</creatorcontrib><creatorcontrib>LUO, Linmin</creatorcontrib><title>Nonnegative Component Representation with Hierarchical Dictionary Learning Strategy for Action Recognition</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><description>Nonnegative component representation (NCR) is a mid-level representation based on nonnegative matrix factorization (NMF). Recently, it has attached much attention and achieved encouraging result for action recognition. In this paper, we propose a novel hierarchical dictionary learning strategy (HDLS) for NMF to improve the performance of NCR. Considering the variability of action classes, HDLS clusters the similar classes into groups and forms a two-layer hierarchical class model. The groups in the first layer are disjoint, while in the second layer, the classes in each group are correlated. HDLS takes account of the differences between two layers and proposes to use different dictionary learning methods for this two layers, including the discriminant class-specific NMF for the first layer and the discriminant joint dictionary NMF for the second layer. The proposed approach is extensively tested on three public datasets and the experimental results demonstrate the effectiveness and superiority of NCR with HDLS for large-scale action recognition.</description><subject>action recognition</subject><subject>hierarchical dictionary learning strategy</subject><subject>nonnegative component representation</subject><subject>nonnegative matrix factorization</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpNkN1OAjEUhBujiYi-gRd9gcV2u-22lwRQTDZq_LluuuXsUgJd0jYa3t5FULmaSeZ8k5NB6JaSEeWyvEvB-Oh8M8oJ5bNpJakoztCAlgXPKBP0HA2IoiKTnOWX6CrGFSFU5pQP0Oqp8x5ak9wn4Em32XYefMKvsA0Qe9cHncdfLi3x3EEwwS6dNWs8dXafmLDDFZjgnW_xW_9HgnaHmy7g8U_eF9mu9W7vr9FFY9YRbo46RB_3s_fJPKueHx4n4yqzBRMpq5klFJjiIPJcgWiaBZVcckWkorVhqmS2LKQRNZG2kWZhGAMLRVkzyXuUDVFx6LWhizFAo7fBbfpPNSV6v5f-3Uuf7NVjLwdsFZNp4Q8yITm7hn9oppSe6uKoJxV_p3ZpggbPvgFjTYBT</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>WANG, Jianhong</creator><creator>ZHANG, Pinzheng</creator><creator>LUO, Linmin</creator><general>The Institute of Electronics, Information and Communication Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160401</creationdate><title>Nonnegative Component Representation with Hierarchical Dictionary Learning Strategy for Action Recognition</title><author>WANG, Jianhong ; ZHANG, Pinzheng ; LUO, Linmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-b3c01e395e6229e6ffd1858590891ba3973c748a6b08cf8ada33ece47b385c013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>action recognition</topic><topic>hierarchical dictionary learning strategy</topic><topic>nonnegative component representation</topic><topic>nonnegative matrix factorization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WANG, Jianhong</creatorcontrib><creatorcontrib>ZHANG, Pinzheng</creatorcontrib><creatorcontrib>LUO, Linmin</creatorcontrib><collection>CrossRef</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WANG, Jianhong</au><au>ZHANG, Pinzheng</au><au>LUO, Linmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonnegative Component Representation with Hierarchical Dictionary Learning Strategy for Action Recognition</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>E99.D</volume><issue>4</issue><spage>1259</spage><epage>1263</epage><pages>1259-1263</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>Nonnegative component representation (NCR) is a mid-level representation based on nonnegative matrix factorization (NMF). Recently, it has attached much attention and achieved encouraging result for action recognition. In this paper, we propose a novel hierarchical dictionary learning strategy (HDLS) for NMF to improve the performance of NCR. Considering the variability of action classes, HDLS clusters the similar classes into groups and forms a two-layer hierarchical class model. The groups in the first layer are disjoint, while in the second layer, the classes in each group are correlated. HDLS takes account of the differences between two layers and proposes to use different dictionary learning methods for this two layers, including the discriminant class-specific NMF for the first layer and the discriminant joint dictionary NMF for the second layer. The proposed approach is extensively tested on three public datasets and the experimental results demonstrate the effectiveness and superiority of NCR with HDLS for large-scale action recognition.</abstract><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2015EDL8164</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-8532
ispartof IEICE Transactions on Information and Systems, 2016/04/01, Vol.E99.D(4), pp.1259-1263
issn 0916-8532
1745-1361
language eng
recordid cdi_crossref_primary_10_1587_transinf_2015EDL8164
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese
subjects action recognition
hierarchical dictionary learning strategy
nonnegative component representation
nonnegative matrix factorization
title Nonnegative Component Representation with Hierarchical Dictionary Learning Strategy for Action Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A40%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonnegative%20Component%20Representation%20with%20Hierarchical%20Dictionary%20Learning%20Strategy%20for%20Action%20Recognition&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=WANG,%20Jianhong&rft.date=2016-04-01&rft.volume=E99.D&rft.issue=4&rft.spage=1259&rft.epage=1263&rft.pages=1259-1263&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2015EDL8164&rft_dat=%3Cjstage_cross%3Earticle_transinf_E99_D_4_E99_D_2015EDL8164_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true