Nonnegative Component Representation with Hierarchical Dictionary Learning Strategy for Action Recognition
Nonnegative component representation (NCR) is a mid-level representation based on nonnegative matrix factorization (NMF). Recently, it has attached much attention and achieved encouraging result for action recognition. In this paper, we propose a novel hierarchical dictionary learning strategy (HDLS...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2016/04/01, Vol.E99.D(4), pp.1259-1263 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1263 |
---|---|
container_issue | 4 |
container_start_page | 1259 |
container_title | IEICE Transactions on Information and Systems |
container_volume | E99.D |
creator | WANG, Jianhong ZHANG, Pinzheng LUO, Linmin |
description | Nonnegative component representation (NCR) is a mid-level representation based on nonnegative matrix factorization (NMF). Recently, it has attached much attention and achieved encouraging result for action recognition. In this paper, we propose a novel hierarchical dictionary learning strategy (HDLS) for NMF to improve the performance of NCR. Considering the variability of action classes, HDLS clusters the similar classes into groups and forms a two-layer hierarchical class model. The groups in the first layer are disjoint, while in the second layer, the classes in each group are correlated. HDLS takes account of the differences between two layers and proposes to use different dictionary learning methods for this two layers, including the discriminant class-specific NMF for the first layer and the discriminant joint dictionary NMF for the second layer. The proposed approach is extensively tested on three public datasets and the experimental results demonstrate the effectiveness and superiority of NCR with HDLS for large-scale action recognition. |
doi_str_mv | 10.1587/transinf.2015EDL8164 |
format | Article |
fullrecord | <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1587_transinf_2015EDL8164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_transinf_E99_D_4_E99_D_2015EDL8164_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-b3c01e395e6229e6ffd1858590891ba3973c748a6b08cf8ada33ece47b385c013</originalsourceid><addsrcrecordid>eNpNkN1OAjEUhBujiYi-gRd9gcV2u-22lwRQTDZq_LluuuXsUgJd0jYa3t5FULmaSeZ8k5NB6JaSEeWyvEvB-Oh8M8oJ5bNpJakoztCAlgXPKBP0HA2IoiKTnOWX6CrGFSFU5pQP0Oqp8x5ak9wn4Em32XYefMKvsA0Qe9cHncdfLi3x3EEwwS6dNWs8dXafmLDDFZjgnW_xW_9HgnaHmy7g8U_eF9mu9W7vr9FFY9YRbo46RB_3s_fJPKueHx4n4yqzBRMpq5klFJjiIPJcgWiaBZVcckWkorVhqmS2LKQRNZG2kWZhGAMLRVkzyXuUDVFx6LWhizFAo7fBbfpPNSV6v5f-3Uuf7NVjLwdsFZNp4Q8yITm7hn9oppSe6uKoJxV_p3ZpggbPvgFjTYBT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonnegative Component Representation with Hierarchical Dictionary Learning Strategy for Action Recognition</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>WANG, Jianhong ; ZHANG, Pinzheng ; LUO, Linmin</creator><creatorcontrib>WANG, Jianhong ; ZHANG, Pinzheng ; LUO, Linmin</creatorcontrib><description>Nonnegative component representation (NCR) is a mid-level representation based on nonnegative matrix factorization (NMF). Recently, it has attached much attention and achieved encouraging result for action recognition. In this paper, we propose a novel hierarchical dictionary learning strategy (HDLS) for NMF to improve the performance of NCR. Considering the variability of action classes, HDLS clusters the similar classes into groups and forms a two-layer hierarchical class model. The groups in the first layer are disjoint, while in the second layer, the classes in each group are correlated. HDLS takes account of the differences between two layers and proposes to use different dictionary learning methods for this two layers, including the discriminant class-specific NMF for the first layer and the discriminant joint dictionary NMF for the second layer. The proposed approach is extensively tested on three public datasets and the experimental results demonstrate the effectiveness and superiority of NCR with HDLS for large-scale action recognition.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2015EDL8164</identifier><language>eng</language><publisher>The Institute of Electronics, Information and Communication Engineers</publisher><subject>action recognition ; hierarchical dictionary learning strategy ; nonnegative component representation ; nonnegative matrix factorization</subject><ispartof>IEICE Transactions on Information and Systems, 2016/04/01, Vol.E99.D(4), pp.1259-1263</ispartof><rights>2016 The Institute of Electronics, Information and Communication Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-b3c01e395e6229e6ffd1858590891ba3973c748a6b08cf8ada33ece47b385c013</citedby><cites>FETCH-LOGICAL-c436t-b3c01e395e6229e6ffd1858590891ba3973c748a6b08cf8ada33ece47b385c013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>WANG, Jianhong</creatorcontrib><creatorcontrib>ZHANG, Pinzheng</creatorcontrib><creatorcontrib>LUO, Linmin</creatorcontrib><title>Nonnegative Component Representation with Hierarchical Dictionary Learning Strategy for Action Recognition</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. & Syst.</addtitle><description>Nonnegative component representation (NCR) is a mid-level representation based on nonnegative matrix factorization (NMF). Recently, it has attached much attention and achieved encouraging result for action recognition. In this paper, we propose a novel hierarchical dictionary learning strategy (HDLS) for NMF to improve the performance of NCR. Considering the variability of action classes, HDLS clusters the similar classes into groups and forms a two-layer hierarchical class model. The groups in the first layer are disjoint, while in the second layer, the classes in each group are correlated. HDLS takes account of the differences between two layers and proposes to use different dictionary learning methods for this two layers, including the discriminant class-specific NMF for the first layer and the discriminant joint dictionary NMF for the second layer. The proposed approach is extensively tested on three public datasets and the experimental results demonstrate the effectiveness and superiority of NCR with HDLS for large-scale action recognition.</description><subject>action recognition</subject><subject>hierarchical dictionary learning strategy</subject><subject>nonnegative component representation</subject><subject>nonnegative matrix factorization</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpNkN1OAjEUhBujiYi-gRd9gcV2u-22lwRQTDZq_LluuuXsUgJd0jYa3t5FULmaSeZ8k5NB6JaSEeWyvEvB-Oh8M8oJ5bNpJakoztCAlgXPKBP0HA2IoiKTnOWX6CrGFSFU5pQP0Oqp8x5ak9wn4Em32XYefMKvsA0Qe9cHncdfLi3x3EEwwS6dNWs8dXafmLDDFZjgnW_xW_9HgnaHmy7g8U_eF9mu9W7vr9FFY9YRbo46RB_3s_fJPKueHx4n4yqzBRMpq5klFJjiIPJcgWiaBZVcckWkorVhqmS2LKQRNZG2kWZhGAMLRVkzyXuUDVFx6LWhizFAo7fBbfpPNSV6v5f-3Uuf7NVjLwdsFZNp4Q8yITm7hn9oppSe6uKoJxV_p3ZpggbPvgFjTYBT</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>WANG, Jianhong</creator><creator>ZHANG, Pinzheng</creator><creator>LUO, Linmin</creator><general>The Institute of Electronics, Information and Communication Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160401</creationdate><title>Nonnegative Component Representation with Hierarchical Dictionary Learning Strategy for Action Recognition</title><author>WANG, Jianhong ; ZHANG, Pinzheng ; LUO, Linmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-b3c01e395e6229e6ffd1858590891ba3973c748a6b08cf8ada33ece47b385c013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>action recognition</topic><topic>hierarchical dictionary learning strategy</topic><topic>nonnegative component representation</topic><topic>nonnegative matrix factorization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WANG, Jianhong</creatorcontrib><creatorcontrib>ZHANG, Pinzheng</creatorcontrib><creatorcontrib>LUO, Linmin</creatorcontrib><collection>CrossRef</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WANG, Jianhong</au><au>ZHANG, Pinzheng</au><au>LUO, Linmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonnegative Component Representation with Hierarchical Dictionary Learning Strategy for Action Recognition</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. & Syst.</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>E99.D</volume><issue>4</issue><spage>1259</spage><epage>1263</epage><pages>1259-1263</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>Nonnegative component representation (NCR) is a mid-level representation based on nonnegative matrix factorization (NMF). Recently, it has attached much attention and achieved encouraging result for action recognition. In this paper, we propose a novel hierarchical dictionary learning strategy (HDLS) for NMF to improve the performance of NCR. Considering the variability of action classes, HDLS clusters the similar classes into groups and forms a two-layer hierarchical class model. The groups in the first layer are disjoint, while in the second layer, the classes in each group are correlated. HDLS takes account of the differences between two layers and proposes to use different dictionary learning methods for this two layers, including the discriminant class-specific NMF for the first layer and the discriminant joint dictionary NMF for the second layer. The proposed approach is extensively tested on three public datasets and the experimental results demonstrate the effectiveness and superiority of NCR with HDLS for large-scale action recognition.</abstract><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2015EDL8164</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8532 |
ispartof | IEICE Transactions on Information and Systems, 2016/04/01, Vol.E99.D(4), pp.1259-1263 |
issn | 0916-8532 1745-1361 |
language | eng |
recordid | cdi_crossref_primary_10_1587_transinf_2015EDL8164 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese |
subjects | action recognition hierarchical dictionary learning strategy nonnegative component representation nonnegative matrix factorization |
title | Nonnegative Component Representation with Hierarchical Dictionary Learning Strategy for Action Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A40%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonnegative%20Component%20Representation%20with%20Hierarchical%20Dictionary%20Learning%20Strategy%20for%20Action%20Recognition&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=WANG,%20Jianhong&rft.date=2016-04-01&rft.volume=E99.D&rft.issue=4&rft.spage=1259&rft.epage=1263&rft.pages=1259-1263&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2015EDL8164&rft_dat=%3Cjstage_cross%3Earticle_transinf_E99_D_4_E99_D_2015EDL8164_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |