Multi-ship Formation Recognition for HFSWR in a Long Coherent Integration Time
The deep learning method has been proven to be perfect in the field of multi-ship formation (MSF) recognition for high-frequency surface wave radar (HFSWR). However, the range-Doppler (RD) images of MSF are not always available in large quantities for training. And there is diversification in format...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2024, pp.2024EAL2061 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 2024EAL2061 |
container_title | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences |
container_volume | |
creator | Wang, Jiaqi Liu, Aijun Yu, Changjun |
description | The deep learning method has been proven to be perfect in the field of multi-ship formation (MSF) recognition for high-frequency surface wave radar (HFSWR). However, the range-Doppler (RD) images of MSF are not always available in large quantities for training. And there is diversification in formation styles. In this paper, we propose a signal processing method for HFSWR formation recognition, which performs RD imaging through coherent accumulation and motion compensation. In the Doppler profile, the peaks are equal to sub-targets. The experiments based on actual RD background verify the feasibility and robustness of the proposed method. |
doi_str_mv | 10.1587/transfun.2024EAL2061 |
format | Article |
fullrecord | <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1587_transfun_2024EAL2061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_transfun_advpub_0_advpub_2024EAL2061_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c177n-d9046163bb5d68c578c36928a897ca74b2521ef8b59e06f1d3fef884ce312c1a3</originalsourceid><addsrcrecordid>eNpNkM1OAjEUhRujiYi-gYu-wGBvO_2ZJSEgJKMmiHE56XQ6Qwl0SDuY-PagCLK65ybnO4sPoUcgA-BKPnVB-1jv_IASmo6HOSUCrlAPZMoTYExeox7JQCSKE3WL7mJcEQKKQtpDry-7deeSuHRbPGnDRneu9XhuTdt495vrNuDp5P1zjp3HGuetb_CoXdpgfYdnvrNNOEILt7H36KbW62gf_m4ffUzGi9E0yd-eZ6NhnhiQ0idVRlIBgpUlr4QyXCrDREaVVpk0WqYl5RRsrUqeWSJqqFh9-FRqLANqQLM-So-7JrQxBlsX2-A2OnwXQIofJ8XJSXHh5IDNj9gqdrqxZ0iHzpm1_Yd09bXdlQU5hYuRc9ksdSisZ3sabXZM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-ship Formation Recognition for HFSWR in a Long Coherent Integration Time</title><source>J-STAGE Free</source><creator>Wang, Jiaqi ; Liu, Aijun ; Yu, Changjun</creator><creatorcontrib>Wang, Jiaqi ; Liu, Aijun ; Yu, Changjun</creatorcontrib><description>The deep learning method has been proven to be perfect in the field of multi-ship formation (MSF) recognition for high-frequency surface wave radar (HFSWR). However, the range-Doppler (RD) images of MSF are not always available in large quantities for training. And there is diversification in formation styles. In this paper, we propose a signal processing method for HFSWR formation recognition, which performs RD imaging through coherent accumulation and motion compensation. In the Doppler profile, the peaks are equal to sub-targets. The experiments based on actual RD background verify the feasibility and robustness of the proposed method.</description><identifier>ISSN: 0916-8508</identifier><identifier>EISSN: 1745-1337</identifier><identifier>DOI: 10.1587/transfun.2024EAL2061</identifier><language>eng ; jpn</language><publisher>The Institute of Electronics, Information and Communication Engineers</publisher><subject>formation recognition ; high-frequency surface wave radar ; motion compensate ; robustness</subject><ispartof>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2024, pp.2024EAL2061</ispartof><rights>2024 The Institute of Electronics, Information and Communication Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Jiaqi</creatorcontrib><creatorcontrib>Liu, Aijun</creatorcontrib><creatorcontrib>Yu, Changjun</creatorcontrib><title>Multi-ship Formation Recognition for HFSWR in a Long Coherent Integration Time</title><title>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</title><addtitle>IEICE Trans. Fundamentals</addtitle><description>The deep learning method has been proven to be perfect in the field of multi-ship formation (MSF) recognition for high-frequency surface wave radar (HFSWR). However, the range-Doppler (RD) images of MSF are not always available in large quantities for training. And there is diversification in formation styles. In this paper, we propose a signal processing method for HFSWR formation recognition, which performs RD imaging through coherent accumulation and motion compensation. In the Doppler profile, the peaks are equal to sub-targets. The experiments based on actual RD background verify the feasibility and robustness of the proposed method.</description><subject>formation recognition</subject><subject>high-frequency surface wave radar</subject><subject>motion compensate</subject><subject>robustness</subject><issn>0916-8508</issn><issn>1745-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OAjEUhRujiYi-gYu-wGBvO_2ZJSEgJKMmiHE56XQ6Qwl0SDuY-PagCLK65ybnO4sPoUcgA-BKPnVB-1jv_IASmo6HOSUCrlAPZMoTYExeox7JQCSKE3WL7mJcEQKKQtpDry-7deeSuHRbPGnDRneu9XhuTdt495vrNuDp5P1zjp3HGuetb_CoXdpgfYdnvrNNOEILt7H36KbW62gf_m4ffUzGi9E0yd-eZ6NhnhiQ0idVRlIBgpUlr4QyXCrDREaVVpk0WqYl5RRsrUqeWSJqqFh9-FRqLANqQLM-So-7JrQxBlsX2-A2OnwXQIofJ8XJSXHh5IDNj9gqdrqxZ0iHzpm1_Yd09bXdlQU5hYuRc9ksdSisZ3sabXZM</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wang, Jiaqi</creator><creator>Liu, Aijun</creator><creator>Yu, Changjun</creator><general>The Institute of Electronics, Information and Communication Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Multi-ship Formation Recognition for HFSWR in a Long Coherent Integration Time</title><author>Wang, Jiaqi ; Liu, Aijun ; Yu, Changjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c177n-d9046163bb5d68c578c36928a897ca74b2521ef8b59e06f1d3fef884ce312c1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2024</creationdate><topic>formation recognition</topic><topic>high-frequency surface wave radar</topic><topic>motion compensate</topic><topic>robustness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jiaqi</creatorcontrib><creatorcontrib>Liu, Aijun</creatorcontrib><creatorcontrib>Yu, Changjun</creatorcontrib><collection>CrossRef</collection><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jiaqi</au><au>Liu, Aijun</au><au>Yu, Changjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-ship Formation Recognition for HFSWR in a Long Coherent Integration Time</atitle><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle><addtitle>IEICE Trans. Fundamentals</addtitle><date>2024</date><risdate>2024</risdate><spage>2024EAL2061</spage><pages>2024EAL2061-</pages><artnum>2024EAL2061</artnum><issn>0916-8508</issn><eissn>1745-1337</eissn><abstract>The deep learning method has been proven to be perfect in the field of multi-ship formation (MSF) recognition for high-frequency surface wave radar (HFSWR). However, the range-Doppler (RD) images of MSF are not always available in large quantities for training. And there is diversification in formation styles. In this paper, we propose a signal processing method for HFSWR formation recognition, which performs RD imaging through coherent accumulation and motion compensation. In the Doppler profile, the peaks are equal to sub-targets. The experiments based on actual RD background verify the feasibility and robustness of the proposed method.</abstract><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transfun.2024EAL2061</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8508 |
ispartof | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2024, pp.2024EAL2061 |
issn | 0916-8508 1745-1337 |
language | eng ; jpn |
recordid | cdi_crossref_primary_10_1587_transfun_2024EAL2061 |
source | J-STAGE Free |
subjects | formation recognition high-frequency surface wave radar motion compensate robustness |
title | Multi-ship Formation Recognition for HFSWR in a Long Coherent Integration Time |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A06%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-ship%20Formation%20Recognition%20for%20HFSWR%20in%20a%20Long%20Coherent%20Integration%20Time&rft.jtitle=IEICE%20Transactions%20on%20Fundamentals%20of%20Electronics,%20Communications%20and%20Computer%20Sciences&rft.au=Wang,%20Jiaqi&rft.date=2024&rft.spage=2024EAL2061&rft.pages=2024EAL2061-&rft.artnum=2024EAL2061&rft.issn=0916-8508&rft.eissn=1745-1337&rft_id=info:doi/10.1587/transfun.2024EAL2061&rft_dat=%3Cjstage_cross%3Earticle_transfun_advpub_0_advpub_2024EAL2061_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |