Memetic Gravitational Search Algorithm with Hierarchical Population Structure

The multiple chaos embedded gravitational search algorithm (CGSA-M) is an optimization algorithm that utilizes chaotic graphs and local search methods to find optimal solutions. Despite the enhancements introduced in the CGSA-M algorithm compared to the original GSA, it exhibits a pronounced vulnera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2024, pp.2023EAP1156
Hauptverfasser: DONG, Shibo, LI, Haotian, YANG, Yifei, YU, Jiatianyi, LEI, Zhenyu, GAO, Shangce
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 2023EAP1156
container_title IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
container_volume
creator DONG, Shibo
LI, Haotian
YANG, Yifei
YU, Jiatianyi
LEI, Zhenyu
GAO, Shangce
description The multiple chaos embedded gravitational search algorithm (CGSA-M) is an optimization algorithm that utilizes chaotic graphs and local search methods to find optimal solutions. Despite the enhancements introduced in the CGSA-M algorithm compared to the original GSA, it exhibits a pronounced vulnerability to local optima, impeding its capacity to converge to a globally optimal solution. To alleviate the susceptibility of the algorithm to local optima and achieve a more balanced integration of local and global search strategies, we introduce a novel algorithm derived from CGSA-M, denoted as CGSA-H. The algorithm alters the original population structure by introducing a multi-level information exchange mechanism. This modification aims to mitigate the algorithm's sensitivity to local optima, consequently enhancing the overall stability of the algorithm. The effectiveness of the proposed CGSA-H algorithm is validated using the IEEE CEC2017 benchmark test set, consisting of 29 functions. The results demonstrate that CGSA-H outperforms other algorithms in terms of its capability to search for global optimal solutions.
doi_str_mv 10.1587/transfun.2023EAP1156
format Article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1587_transfun_2023EAP1156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_transfun_advpub_0_advpub_2023EAP1156_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c186n-454564cbe64812323845be59d550910305e3f7a3fc15c48d70b6923de4232f933</originalsourceid><addsrcrecordid>eNpNkN9OwjAUhxujiYi-gRd7gWG7tlt3SQiCCUQiet103Rkr2R_SdhjfniGC3JxzcvJ9Jyc_hJ4JHhEukhdvVeOKrhlFOKLT8YoQHt-gAUkYDwmlyS0a4JTEoeBY3KMH57YYExERNkDLJdTgjQ5mVu2NV960jaqCNSiry2BcbVprfFkH330N5gbscW90j6zaXVf98sHa2077zsIjuitU5eDprw_R1-v0czIPF--zt8l4EWoi4iZknPGY6QxiJkhEIyoYz4CnOef9n5hiDrRIFC004ZqJPMFZnEY0B9bDRUrpELHTXW1b5ywUcmdNreyPJFgeI5HnSORVJL32cdK2zqsNXCRl-wQq-JdUvt91mcTn4erIBdalshIaegB4cnZa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Memetic Gravitational Search Algorithm with Hierarchical Population Structure</title><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>DONG, Shibo ; LI, Haotian ; YANG, Yifei ; YU, Jiatianyi ; LEI, Zhenyu ; GAO, Shangce</creator><creatorcontrib>DONG, Shibo ; LI, Haotian ; YANG, Yifei ; YU, Jiatianyi ; LEI, Zhenyu ; GAO, Shangce</creatorcontrib><description>The multiple chaos embedded gravitational search algorithm (CGSA-M) is an optimization algorithm that utilizes chaotic graphs and local search methods to find optimal solutions. Despite the enhancements introduced in the CGSA-M algorithm compared to the original GSA, it exhibits a pronounced vulnerability to local optima, impeding its capacity to converge to a globally optimal solution. To alleviate the susceptibility of the algorithm to local optima and achieve a more balanced integration of local and global search strategies, we introduce a novel algorithm derived from CGSA-M, denoted as CGSA-H. The algorithm alters the original population structure by introducing a multi-level information exchange mechanism. This modification aims to mitigate the algorithm's sensitivity to local optima, consequently enhancing the overall stability of the algorithm. The effectiveness of the proposed CGSA-H algorithm is validated using the IEEE CEC2017 benchmark test set, consisting of 29 functions. The results demonstrate that CGSA-H outperforms other algorithms in terms of its capability to search for global optimal solutions.</description><identifier>ISSN: 0916-8508</identifier><identifier>EISSN: 1745-1337</identifier><identifier>DOI: 10.1587/transfun.2023EAP1156</identifier><language>eng</language><publisher>The Institute of Electronics, Information and Communication Engineers</publisher><subject>gravitational search algorithm ; hierarchical ; memetic algorithms ; metaheuristic algorithms ; population structure</subject><ispartof>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2024, pp.2023EAP1156</ispartof><rights>2024 The Institute of Electronics, Information and Communication Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>DONG, Shibo</creatorcontrib><creatorcontrib>LI, Haotian</creatorcontrib><creatorcontrib>YANG, Yifei</creatorcontrib><creatorcontrib>YU, Jiatianyi</creatorcontrib><creatorcontrib>LEI, Zhenyu</creatorcontrib><creatorcontrib>GAO, Shangce</creatorcontrib><title>Memetic Gravitational Search Algorithm with Hierarchical Population Structure</title><title>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</title><addtitle>IEICE Trans. Fundamentals</addtitle><description>The multiple chaos embedded gravitational search algorithm (CGSA-M) is an optimization algorithm that utilizes chaotic graphs and local search methods to find optimal solutions. Despite the enhancements introduced in the CGSA-M algorithm compared to the original GSA, it exhibits a pronounced vulnerability to local optima, impeding its capacity to converge to a globally optimal solution. To alleviate the susceptibility of the algorithm to local optima and achieve a more balanced integration of local and global search strategies, we introduce a novel algorithm derived from CGSA-M, denoted as CGSA-H. The algorithm alters the original population structure by introducing a multi-level information exchange mechanism. This modification aims to mitigate the algorithm's sensitivity to local optima, consequently enhancing the overall stability of the algorithm. The effectiveness of the proposed CGSA-H algorithm is validated using the IEEE CEC2017 benchmark test set, consisting of 29 functions. The results demonstrate that CGSA-H outperforms other algorithms in terms of its capability to search for global optimal solutions.</description><subject>gravitational search algorithm</subject><subject>hierarchical</subject><subject>memetic algorithms</subject><subject>metaheuristic algorithms</subject><subject>population structure</subject><issn>0916-8508</issn><issn>1745-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkN9OwjAUhxujiYi-gRd7gWG7tlt3SQiCCUQiet103Rkr2R_SdhjfniGC3JxzcvJ9Jyc_hJ4JHhEukhdvVeOKrhlFOKLT8YoQHt-gAUkYDwmlyS0a4JTEoeBY3KMH57YYExERNkDLJdTgjQ5mVu2NV960jaqCNSiry2BcbVprfFkH330N5gbscW90j6zaXVf98sHa2077zsIjuitU5eDprw_R1-v0czIPF--zt8l4EWoi4iZknPGY6QxiJkhEIyoYz4CnOef9n5hiDrRIFC004ZqJPMFZnEY0B9bDRUrpELHTXW1b5ywUcmdNreyPJFgeI5HnSORVJL32cdK2zqsNXCRl-wQq-JdUvt91mcTn4erIBdalshIaegB4cnZa</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>DONG, Shibo</creator><creator>LI, Haotian</creator><creator>YANG, Yifei</creator><creator>YU, Jiatianyi</creator><creator>LEI, Zhenyu</creator><creator>GAO, Shangce</creator><general>The Institute of Electronics, Information and Communication Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Memetic Gravitational Search Algorithm with Hierarchical Population Structure</title><author>DONG, Shibo ; LI, Haotian ; YANG, Yifei ; YU, Jiatianyi ; LEI, Zhenyu ; GAO, Shangce</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c186n-454564cbe64812323845be59d550910305e3f7a3fc15c48d70b6923de4232f933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>gravitational search algorithm</topic><topic>hierarchical</topic><topic>memetic algorithms</topic><topic>metaheuristic algorithms</topic><topic>population structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DONG, Shibo</creatorcontrib><creatorcontrib>LI, Haotian</creatorcontrib><creatorcontrib>YANG, Yifei</creatorcontrib><creatorcontrib>YU, Jiatianyi</creatorcontrib><creatorcontrib>LEI, Zhenyu</creatorcontrib><creatorcontrib>GAO, Shangce</creatorcontrib><collection>CrossRef</collection><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DONG, Shibo</au><au>LI, Haotian</au><au>YANG, Yifei</au><au>YU, Jiatianyi</au><au>LEI, Zhenyu</au><au>GAO, Shangce</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Memetic Gravitational Search Algorithm with Hierarchical Population Structure</atitle><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle><addtitle>IEICE Trans. Fundamentals</addtitle><date>2024</date><risdate>2024</risdate><spage>2023EAP1156</spage><pages>2023EAP1156-</pages><artnum>2023EAP1156</artnum><issn>0916-8508</issn><eissn>1745-1337</eissn><abstract>The multiple chaos embedded gravitational search algorithm (CGSA-M) is an optimization algorithm that utilizes chaotic graphs and local search methods to find optimal solutions. Despite the enhancements introduced in the CGSA-M algorithm compared to the original GSA, it exhibits a pronounced vulnerability to local optima, impeding its capacity to converge to a globally optimal solution. To alleviate the susceptibility of the algorithm to local optima and achieve a more balanced integration of local and global search strategies, we introduce a novel algorithm derived from CGSA-M, denoted as CGSA-H. The algorithm alters the original population structure by introducing a multi-level information exchange mechanism. This modification aims to mitigate the algorithm's sensitivity to local optima, consequently enhancing the overall stability of the algorithm. The effectiveness of the proposed CGSA-H algorithm is validated using the IEEE CEC2017 benchmark test set, consisting of 29 functions. The results demonstrate that CGSA-H outperforms other algorithms in terms of its capability to search for global optimal solutions.</abstract><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transfun.2023EAP1156</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-8508
ispartof IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2024, pp.2023EAP1156
issn 0916-8508
1745-1337
language eng
recordid cdi_crossref_primary_10_1587_transfun_2023EAP1156
source J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese
subjects gravitational search algorithm
hierarchical
memetic algorithms
metaheuristic algorithms
population structure
title Memetic Gravitational Search Algorithm with Hierarchical Population Structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A57%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Memetic%20Gravitational%20Search%20Algorithm%20with%20Hierarchical%20Population%20Structure&rft.jtitle=IEICE%20Transactions%20on%20Fundamentals%20of%20Electronics,%20Communications%20and%20Computer%20Sciences&rft.au=DONG,%20Shibo&rft.date=2024&rft.spage=2023EAP1156&rft.pages=2023EAP1156-&rft.artnum=2023EAP1156&rft.issn=0916-8508&rft.eissn=1745-1337&rft_id=info:doi/10.1587/transfun.2023EAP1156&rft_dat=%3Cjstage_cross%3Earticle_transfun_advpub_0_advpub_2023EAP1156_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true