Frequency extension of radio propagation model using fine-tuning

Research and development of wireless emulation technology have been conducted for large-scale evaluation and verification of wireless communication systems in a virtual space. Emulation for various scenarios requires accurate and fast modeling techniques for radio propagation characteristics. The au...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE COMMUNICATIONS EXPRESS 2023/09/01, Vol.12(9), pp.499-504
Hauptverfasser: Nagao, Tatsuya, Hayashi, Takahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 504
container_issue 9
container_start_page 499
container_title IEICE COMMUNICATIONS EXPRESS
container_volume 12
creator Nagao, Tatsuya
Hayashi, Takahiro
description Research and development of wireless emulation technology have been conducted for large-scale evaluation and verification of wireless communication systems in a virtual space. Emulation for various scenarios requires accurate and fast modeling techniques for radio propagation characteristics. The authors have proposed modeling methods using machine learning. However, when the amount of measurement data is slight, such as when new frequencies are implemented, the modeling accuracy is an important issue due to insufficient learning. This paper clarifies the relationship between the amount of data and the modeling accuracy. Moreover, we propose a fine-tuning method for modeling the propagation characteristics in a new frequency by pre-training in a frequency with large training data. Finally, through the evaluation using the measurement data in various areas, we demonstrate the effectiveness of the proposed method.
doi_str_mv 10.1587/comex.2023XBL0080
format Article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1587_comex_2023XBL0080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_comex_12_9_12_2023XBL0080_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-79a057539a897bd5af5d67eb15b071a96f61c0b656c68b9a68cdfd535a86a80d3</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiQT5Ad72DyxOt_ZjbyoRNCHxoom3ZrYfuARabJcE_r0gRPcy8-bNPHN4CLmlMKZcyTsT1243rqBin09zAAUXZFBRJUugTFz28jUZ5bwEAFZRdl_xAXmYJve9dcHsC7frXMhtDEX0RULbxmKT4gYX2B3LdbRuVWxzGxaFb4Mru2045Bty5XGV3ei8h-Rj-vw-eSnnb7PXyeO8NIzLrpQ1Apec1ahq2ViOnlshXUN5A5JiLbygBhrBhRGqqVEoY73ljKMSqMCyIaGnvybFnJPzepPaNaa9pqCPFvSvBd2zcGBmJ2aZO1y4PwJT15qVOxO00vVx9Mj_iy9M2gX2Ay5Fa0Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Frequency extension of radio propagation model using fine-tuning</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Freely Accessible Japanese Titles</source><creator>Nagao, Tatsuya ; Hayashi, Takahiro</creator><creatorcontrib>Nagao, Tatsuya ; Hayashi, Takahiro</creatorcontrib><description>Research and development of wireless emulation technology have been conducted for large-scale evaluation and verification of wireless communication systems in a virtual space. Emulation for various scenarios requires accurate and fast modeling techniques for radio propagation characteristics. The authors have proposed modeling methods using machine learning. However, when the amount of measurement data is slight, such as when new frequencies are implemented, the modeling accuracy is an important issue due to insufficient learning. This paper clarifies the relationship between the amount of data and the modeling accuracy. Moreover, we propose a fine-tuning method for modeling the propagation characteristics in a new frequency by pre-training in a frequency with large training data. Finally, through the evaluation using the measurement data in various areas, we demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 2187-0136</identifier><identifier>EISSN: 2187-0136</identifier><identifier>DOI: 10.1587/comex.2023XBL0080</identifier><language>eng</language><publisher>The Institute of Electronics, Information and Communication Engineers</publisher><subject>machine learning ; radio propagation prediction</subject><ispartof>IEICE Communications Express, 2023/09/01, Vol.12(9), pp.499-504</ispartof><rights>2023 The Institute of Electronics, Information and Communication Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c357t-79a057539a897bd5af5d67eb15b071a96f61c0b656c68b9a68cdfd535a86a80d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1876,27903,27904</link.rule.ids></links><search><creatorcontrib>Nagao, Tatsuya</creatorcontrib><creatorcontrib>Hayashi, Takahiro</creatorcontrib><title>Frequency extension of radio propagation model using fine-tuning</title><title>IEICE COMMUNICATIONS EXPRESS</title><addtitle>IEICE ComEX</addtitle><description>Research and development of wireless emulation technology have been conducted for large-scale evaluation and verification of wireless communication systems in a virtual space. Emulation for various scenarios requires accurate and fast modeling techniques for radio propagation characteristics. The authors have proposed modeling methods using machine learning. However, when the amount of measurement data is slight, such as when new frequencies are implemented, the modeling accuracy is an important issue due to insufficient learning. This paper clarifies the relationship between the amount of data and the modeling accuracy. Moreover, we propose a fine-tuning method for modeling the propagation characteristics in a new frequency by pre-training in a frequency with large training data. Finally, through the evaluation using the measurement data in various areas, we demonstrate the effectiveness of the proposed method.</description><subject>machine learning</subject><subject>radio propagation prediction</subject><issn>2187-0136</issn><issn>2187-0136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PAjEQhhujiQT5Ad72DyxOt_ZjbyoRNCHxoom3ZrYfuARabJcE_r0gRPcy8-bNPHN4CLmlMKZcyTsT1243rqBin09zAAUXZFBRJUugTFz28jUZ5bwEAFZRdl_xAXmYJve9dcHsC7frXMhtDEX0RULbxmKT4gYX2B3LdbRuVWxzGxaFb4Mru2045Bty5XGV3ei8h-Rj-vw-eSnnb7PXyeO8NIzLrpQ1Apec1ahq2ViOnlshXUN5A5JiLbygBhrBhRGqqVEoY73ljKMSqMCyIaGnvybFnJPzepPaNaa9pqCPFvSvBd2zcGBmJ2aZO1y4PwJT15qVOxO00vVx9Mj_iy9M2gX2Ay5Fa0Y</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Nagao, Tatsuya</creator><creator>Hayashi, Takahiro</creator><general>The Institute of Electronics, Information and Communication Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230901</creationdate><title>Frequency extension of radio propagation model using fine-tuning</title><author>Nagao, Tatsuya ; Hayashi, Takahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-79a057539a897bd5af5d67eb15b071a96f61c0b656c68b9a68cdfd535a86a80d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>machine learning</topic><topic>radio propagation prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagao, Tatsuya</creatorcontrib><creatorcontrib>Hayashi, Takahiro</creatorcontrib><collection>CrossRef</collection><jtitle>IEICE COMMUNICATIONS EXPRESS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagao, Tatsuya</au><au>Hayashi, Takahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency extension of radio propagation model using fine-tuning</atitle><jtitle>IEICE COMMUNICATIONS EXPRESS</jtitle><addtitle>IEICE ComEX</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>12</volume><issue>9</issue><spage>499</spage><epage>504</epage><pages>499-504</pages><artnum>2023XBL0080</artnum><issn>2187-0136</issn><eissn>2187-0136</eissn><abstract>Research and development of wireless emulation technology have been conducted for large-scale evaluation and verification of wireless communication systems in a virtual space. Emulation for various scenarios requires accurate and fast modeling techniques for radio propagation characteristics. The authors have proposed modeling methods using machine learning. However, when the amount of measurement data is slight, such as when new frequencies are implemented, the modeling accuracy is an important issue due to insufficient learning. This paper clarifies the relationship between the amount of data and the modeling accuracy. Moreover, we propose a fine-tuning method for modeling the propagation characteristics in a new frequency by pre-training in a frequency with large training data. Finally, through the evaluation using the measurement data in various areas, we demonstrate the effectiveness of the proposed method.</abstract><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/comex.2023XBL0080</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2187-0136
ispartof IEICE Communications Express, 2023/09/01, Vol.12(9), pp.499-504
issn 2187-0136
2187-0136
language eng
recordid cdi_crossref_primary_10_1587_comex_2023XBL0080
source J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Freely Accessible Japanese Titles
subjects machine learning
radio propagation prediction
title Frequency extension of radio propagation model using fine-tuning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency%20extension%20of%20radio%20propagation%20model%20using%20fine-tuning&rft.jtitle=IEICE%20COMMUNICATIONS%20EXPRESS&rft.au=Nagao,%20Tatsuya&rft.date=2023-09-01&rft.volume=12&rft.issue=9&rft.spage=499&rft.epage=504&rft.pages=499-504&rft.artnum=2023XBL0080&rft.issn=2187-0136&rft.eissn=2187-0136&rft_id=info:doi/10.1587/comex.2023XBL0080&rft_dat=%3Cjstage_cross%3Earticle_comex_12_9_12_2023XBL0080_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true