Frequency extension of radio propagation model using fine-tuning
Research and development of wireless emulation technology have been conducted for large-scale evaluation and verification of wireless communication systems in a virtual space. Emulation for various scenarios requires accurate and fast modeling techniques for radio propagation characteristics. The au...
Gespeichert in:
Veröffentlicht in: | IEICE COMMUNICATIONS EXPRESS 2023/09/01, Vol.12(9), pp.499-504 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 504 |
---|---|
container_issue | 9 |
container_start_page | 499 |
container_title | IEICE COMMUNICATIONS EXPRESS |
container_volume | 12 |
creator | Nagao, Tatsuya Hayashi, Takahiro |
description | Research and development of wireless emulation technology have been conducted for large-scale evaluation and verification of wireless communication systems in a virtual space. Emulation for various scenarios requires accurate and fast modeling techniques for radio propagation characteristics. The authors have proposed modeling methods using machine learning. However, when the amount of measurement data is slight, such as when new frequencies are implemented, the modeling accuracy is an important issue due to insufficient learning. This paper clarifies the relationship between the amount of data and the modeling accuracy. Moreover, we propose a fine-tuning method for modeling the propagation characteristics in a new frequency by pre-training in a frequency with large training data. Finally, through the evaluation using the measurement data in various areas, we demonstrate the effectiveness of the proposed method. |
doi_str_mv | 10.1587/comex.2023XBL0080 |
format | Article |
fullrecord | <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1587_comex_2023XBL0080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_comex_12_9_12_2023XBL0080_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-79a057539a897bd5af5d67eb15b071a96f61c0b656c68b9a68cdfd535a86a80d3</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiQT5Ad72DyxOt_ZjbyoRNCHxoom3ZrYfuARabJcE_r0gRPcy8-bNPHN4CLmlMKZcyTsT1243rqBin09zAAUXZFBRJUugTFz28jUZ5bwEAFZRdl_xAXmYJve9dcHsC7frXMhtDEX0RULbxmKT4gYX2B3LdbRuVWxzGxaFb4Mru2045Bty5XGV3ei8h-Rj-vw-eSnnb7PXyeO8NIzLrpQ1Apec1ahq2ViOnlshXUN5A5JiLbygBhrBhRGqqVEoY73ljKMSqMCyIaGnvybFnJPzepPaNaa9pqCPFvSvBd2zcGBmJ2aZO1y4PwJT15qVOxO00vVx9Mj_iy9M2gX2Ay5Fa0Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Frequency extension of radio propagation model using fine-tuning</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Freely Accessible Japanese Titles</source><creator>Nagao, Tatsuya ; Hayashi, Takahiro</creator><creatorcontrib>Nagao, Tatsuya ; Hayashi, Takahiro</creatorcontrib><description>Research and development of wireless emulation technology have been conducted for large-scale evaluation and verification of wireless communication systems in a virtual space. Emulation for various scenarios requires accurate and fast modeling techniques for radio propagation characteristics. The authors have proposed modeling methods using machine learning. However, when the amount of measurement data is slight, such as when new frequencies are implemented, the modeling accuracy is an important issue due to insufficient learning. This paper clarifies the relationship between the amount of data and the modeling accuracy. Moreover, we propose a fine-tuning method for modeling the propagation characteristics in a new frequency by pre-training in a frequency with large training data. Finally, through the evaluation using the measurement data in various areas, we demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 2187-0136</identifier><identifier>EISSN: 2187-0136</identifier><identifier>DOI: 10.1587/comex.2023XBL0080</identifier><language>eng</language><publisher>The Institute of Electronics, Information and Communication Engineers</publisher><subject>machine learning ; radio propagation prediction</subject><ispartof>IEICE Communications Express, 2023/09/01, Vol.12(9), pp.499-504</ispartof><rights>2023 The Institute of Electronics, Information and Communication Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c357t-79a057539a897bd5af5d67eb15b071a96f61c0b656c68b9a68cdfd535a86a80d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1876,27903,27904</link.rule.ids></links><search><creatorcontrib>Nagao, Tatsuya</creatorcontrib><creatorcontrib>Hayashi, Takahiro</creatorcontrib><title>Frequency extension of radio propagation model using fine-tuning</title><title>IEICE COMMUNICATIONS EXPRESS</title><addtitle>IEICE ComEX</addtitle><description>Research and development of wireless emulation technology have been conducted for large-scale evaluation and verification of wireless communication systems in a virtual space. Emulation for various scenarios requires accurate and fast modeling techniques for radio propagation characteristics. The authors have proposed modeling methods using machine learning. However, when the amount of measurement data is slight, such as when new frequencies are implemented, the modeling accuracy is an important issue due to insufficient learning. This paper clarifies the relationship between the amount of data and the modeling accuracy. Moreover, we propose a fine-tuning method for modeling the propagation characteristics in a new frequency by pre-training in a frequency with large training data. Finally, through the evaluation using the measurement data in various areas, we demonstrate the effectiveness of the proposed method.</description><subject>machine learning</subject><subject>radio propagation prediction</subject><issn>2187-0136</issn><issn>2187-0136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PAjEQhhujiQT5Ad72DyxOt_ZjbyoRNCHxoom3ZrYfuARabJcE_r0gRPcy8-bNPHN4CLmlMKZcyTsT1243rqBin09zAAUXZFBRJUugTFz28jUZ5bwEAFZRdl_xAXmYJve9dcHsC7frXMhtDEX0RULbxmKT4gYX2B3LdbRuVWxzGxaFb4Mru2045Bty5XGV3ei8h-Rj-vw-eSnnb7PXyeO8NIzLrpQ1Apec1ahq2ViOnlshXUN5A5JiLbygBhrBhRGqqVEoY73ljKMSqMCyIaGnvybFnJPzepPaNaa9pqCPFvSvBd2zcGBmJ2aZO1y4PwJT15qVOxO00vVx9Mj_iy9M2gX2Ay5Fa0Y</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Nagao, Tatsuya</creator><creator>Hayashi, Takahiro</creator><general>The Institute of Electronics, Information and Communication Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230901</creationdate><title>Frequency extension of radio propagation model using fine-tuning</title><author>Nagao, Tatsuya ; Hayashi, Takahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-79a057539a897bd5af5d67eb15b071a96f61c0b656c68b9a68cdfd535a86a80d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>machine learning</topic><topic>radio propagation prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagao, Tatsuya</creatorcontrib><creatorcontrib>Hayashi, Takahiro</creatorcontrib><collection>CrossRef</collection><jtitle>IEICE COMMUNICATIONS EXPRESS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagao, Tatsuya</au><au>Hayashi, Takahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency extension of radio propagation model using fine-tuning</atitle><jtitle>IEICE COMMUNICATIONS EXPRESS</jtitle><addtitle>IEICE ComEX</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>12</volume><issue>9</issue><spage>499</spage><epage>504</epage><pages>499-504</pages><artnum>2023XBL0080</artnum><issn>2187-0136</issn><eissn>2187-0136</eissn><abstract>Research and development of wireless emulation technology have been conducted for large-scale evaluation and verification of wireless communication systems in a virtual space. Emulation for various scenarios requires accurate and fast modeling techniques for radio propagation characteristics. The authors have proposed modeling methods using machine learning. However, when the amount of measurement data is slight, such as when new frequencies are implemented, the modeling accuracy is an important issue due to insufficient learning. This paper clarifies the relationship between the amount of data and the modeling accuracy. Moreover, we propose a fine-tuning method for modeling the propagation characteristics in a new frequency by pre-training in a frequency with large training data. Finally, through the evaluation using the measurement data in various areas, we demonstrate the effectiveness of the proposed method.</abstract><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/comex.2023XBL0080</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2187-0136 |
ispartof | IEICE Communications Express, 2023/09/01, Vol.12(9), pp.499-504 |
issn | 2187-0136 2187-0136 |
language | eng |
recordid | cdi_crossref_primary_10_1587_comex_2023XBL0080 |
source | J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Freely Accessible Japanese Titles |
subjects | machine learning radio propagation prediction |
title | Frequency extension of radio propagation model using fine-tuning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency%20extension%20of%20radio%20propagation%20model%20using%20fine-tuning&rft.jtitle=IEICE%20COMMUNICATIONS%20EXPRESS&rft.au=Nagao,%20Tatsuya&rft.date=2023-09-01&rft.volume=12&rft.issue=9&rft.spage=499&rft.epage=504&rft.pages=499-504&rft.artnum=2023XBL0080&rft.issn=2187-0136&rft.eissn=2187-0136&rft_id=info:doi/10.1587/comex.2023XBL0080&rft_dat=%3Cjstage_cross%3Earticle_comex_12_9_12_2023XBL0080_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |