A Brief Introduction to Machine Learning for Engineers
This monograph aims at providing an introduction to key concepts, algorithms, and theoretical results in machine learning. The treatment concentrates on probabilistic models for supervised and unsupervised learning problems. It introduces fundamental concepts and algorithms by building on first prin...
Gespeichert in:
Veröffentlicht in: | Foundations and trends in signal processing 2018-01, Vol.12 (3-4), p.200-431 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 431 |
---|---|
container_issue | 3-4 |
container_start_page | 200 |
container_title | Foundations and trends in signal processing |
container_volume | 12 |
creator | Simeone, Osvaldo |
description | This monograph aims at providing an introduction to key
concepts, algorithms, and theoretical results in machine
learning. The treatment concentrates on probabilistic models
for supervised and unsupervised learning problems. It
introduces fundamental concepts and algorithms by building
on first principles, while also exposing the reader to more
advanced topics with extensive pointers to the literature,
within a unified notation and mathematical framework. The
material is organized according to clearly defined categories,
such as discriminative and generative models, frequentist
and Bayesian approaches, exact and approximate inference,
as well as directed and undirected models. This monograph
is meant as an entry point for researchers with an engineering
background in probability and linear algebra. |
doi_str_mv | 10.1561/2000000102 |
format | Article |
fullrecord | <record><control><sourceid>now_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1561_2000000102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>612000000102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4801-5cc00bae8585b05869b7b576804dd1909817b80a57637686d77e6049d21b263f3</originalsourceid><addsrcrecordid>eNptj81LAzEQxYMfYFu9ePaQkwdh7cxmk80ea6laqHjRc9jNJnVLTUp2F_W_N7ZiETowDLz3Y3iPkEuEW-QCxylsByE9IgMsWJpIxrNjMkQhQbIsZ_Lkz8jEGRm27QpAAGc4IGJC70JjLJ27Lvi6113jHe08fSr1W-MMXZgyuMYtqfWBztwyaia05-TUluvWXPzeEXm9n71MH5PF88N8OlkkOpOACdcaoCqN5JJXwKUoqrzieQyW1TUWUEjMKwlllFhURZ3nRkBW1ClWqWCWjcjN7q8Ovm2DsWoTmvcyfCkE9VNf7etH-GoHO_-hIqSVwH_29d5e-T64mPzwn_EBcA-oTW23a_v1ujOfHfsGTd1q8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Brief Introduction to Machine Learning for Engineers</title><source>Foundations and Trends in Technology</source><creator>Simeone, Osvaldo</creator><creatorcontrib>Simeone, Osvaldo</creatorcontrib><description>This monograph aims at providing an introduction to key
concepts, algorithms, and theoretical results in machine
learning. The treatment concentrates on probabilistic models
for supervised and unsupervised learning problems. It
introduces fundamental concepts and algorithms by building
on first principles, while also exposing the reader to more
advanced topics with extensive pointers to the literature,
within a unified notation and mathematical framework. The
material is organized according to clearly defined categories,
such as discriminative and generative models, frequentist
and Bayesian approaches, exact and approximate inference,
as well as directed and undirected models. This monograph
is meant as an entry point for researchers with an engineering
background in probability and linear algebra.</description><identifier>ISSN: 1932-8346</identifier><identifier>ISBN: 1680834738</identifier><identifier>ISBN: 9781680834734</identifier><identifier>EISSN: 1932-8354</identifier><identifier>DOI: 10.1561/2000000102</identifier><language>eng</language><publisher>Boston - Delft: Now Publishers</publisher><subject>Bayesian learning ; Classification and prediction ; Clustering ; Computer Science ; Engineering ; Engineering mathematics ; Graphical models ; Image and video processing ; Machine Learning ; Signal Processing ; Technology</subject><ispartof>Foundations and trends in signal processing, 2018-01, Vol.12 (3-4), p.200-431</ispartof><rights>2018 O. Simeone</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4801-5cc00bae8585b05869b7b576804dd1909817b80a57637686d77e6049d21b263f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4135,27924,27925</link.rule.ids></links><search><creatorcontrib>Simeone, Osvaldo</creatorcontrib><title>A Brief Introduction to Machine Learning for Engineers</title><title>Foundations and trends in signal processing</title><addtitle>SIG</addtitle><description>This monograph aims at providing an introduction to key
concepts, algorithms, and theoretical results in machine
learning. The treatment concentrates on probabilistic models
for supervised and unsupervised learning problems. It
introduces fundamental concepts and algorithms by building
on first principles, while also exposing the reader to more
advanced topics with extensive pointers to the literature,
within a unified notation and mathematical framework. The
material is organized according to clearly defined categories,
such as discriminative and generative models, frequentist
and Bayesian approaches, exact and approximate inference,
as well as directed and undirected models. This monograph
is meant as an entry point for researchers with an engineering
background in probability and linear algebra.</description><subject>Bayesian learning</subject><subject>Classification and prediction</subject><subject>Clustering</subject><subject>Computer Science</subject><subject>Engineering</subject><subject>Engineering mathematics</subject><subject>Graphical models</subject><subject>Image and video processing</subject><subject>Machine Learning</subject><subject>Signal Processing</subject><subject>Technology</subject><issn>1932-8346</issn><issn>1932-8354</issn><isbn>1680834738</isbn><isbn>9781680834734</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>NOJ</sourceid><recordid>eNptj81LAzEQxYMfYFu9ePaQkwdh7cxmk80ea6laqHjRc9jNJnVLTUp2F_W_N7ZiETowDLz3Y3iPkEuEW-QCxylsByE9IgMsWJpIxrNjMkQhQbIsZ_Lkz8jEGRm27QpAAGc4IGJC70JjLJ27Lvi6113jHe08fSr1W-MMXZgyuMYtqfWBztwyaia05-TUluvWXPzeEXm9n71MH5PF88N8OlkkOpOACdcaoCqN5JJXwKUoqrzieQyW1TUWUEjMKwlllFhURZ3nRkBW1ClWqWCWjcjN7q8Ovm2DsWoTmvcyfCkE9VNf7etH-GoHO_-hIqSVwH_29d5e-T64mPzwn_EBcA-oTW23a_v1ujOfHfsGTd1q8g</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Simeone, Osvaldo</creator><general>Now Publishers</general><scope>NOJ</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180101</creationdate><title>A Brief Introduction to Machine Learning for Engineers</title><author>Simeone, Osvaldo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4801-5cc00bae8585b05869b7b576804dd1909817b80a57637686d77e6049d21b263f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian learning</topic><topic>Classification and prediction</topic><topic>Clustering</topic><topic>Computer Science</topic><topic>Engineering</topic><topic>Engineering mathematics</topic><topic>Graphical models</topic><topic>Image and video processing</topic><topic>Machine Learning</topic><topic>Signal Processing</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simeone, Osvaldo</creatorcontrib><collection>Now Publishers Journals</collection><collection>CrossRef</collection><jtitle>Foundations and trends in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simeone, Osvaldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Brief Introduction to Machine Learning for Engineers</atitle><jtitle>Foundations and trends in signal processing</jtitle><addtitle>SIG</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>12</volume><issue>3-4</issue><spage>200</spage><epage>431</epage><pages>200-431</pages><issn>1932-8346</issn><eissn>1932-8354</eissn><isbn>1680834738</isbn><isbn>9781680834734</isbn><abstract>This monograph aims at providing an introduction to key
concepts, algorithms, and theoretical results in machine
learning. The treatment concentrates on probabilistic models
for supervised and unsupervised learning problems. It
introduces fundamental concepts and algorithms by building
on first principles, while also exposing the reader to more
advanced topics with extensive pointers to the literature,
within a unified notation and mathematical framework. The
material is organized according to clearly defined categories,
such as discriminative and generative models, frequentist
and Bayesian approaches, exact and approximate inference,
as well as directed and undirected models. This monograph
is meant as an entry point for researchers with an engineering
background in probability and linear algebra.</abstract><cop>Boston - Delft</cop><pub>Now Publishers</pub><doi>10.1561/2000000102</doi><tpages>236</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-8346 |
ispartof | Foundations and trends in signal processing, 2018-01, Vol.12 (3-4), p.200-431 |
issn | 1932-8346 1932-8354 |
language | eng |
recordid | cdi_crossref_primary_10_1561_2000000102 |
source | Foundations and Trends in Technology |
subjects | Bayesian learning Classification and prediction Clustering Computer Science Engineering Engineering mathematics Graphical models Image and video processing Machine Learning Signal Processing Technology |
title | A Brief Introduction to Machine Learning for Engineers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-now_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Brief%20Introduction%20to%20Machine%20Learning%20for%20Engineers&rft.jtitle=Foundations%20and%20trends%20in%20signal%20processing&rft.au=Simeone,%20Osvaldo&rft.date=2018-01-01&rft.volume=12&rft.issue=3-4&rft.spage=200&rft.epage=431&rft.pages=200-431&rft.issn=1932-8346&rft.eissn=1932-8354&rft.isbn=1680834738&rft.isbn_list=9781680834734&rft_id=info:doi/10.1561/2000000102&rft_dat=%3Cnow_cross%3E612000000102%3C/now_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |