A Brief Introduction to Machine Learning for Engineers

This monograph aims at providing an introduction to key concepts, algorithms, and theoretical results in machine learning. The treatment concentrates on probabilistic models for supervised and unsupervised learning problems. It introduces fundamental concepts and algorithms by building on first prin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations and trends in signal processing 2018-01, Vol.12 (3-4), p.200-431
1. Verfasser: Simeone, Osvaldo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 431
container_issue 3-4
container_start_page 200
container_title Foundations and trends in signal processing
container_volume 12
creator Simeone, Osvaldo
description This monograph aims at providing an introduction to key concepts, algorithms, and theoretical results in machine learning. The treatment concentrates on probabilistic models for supervised and unsupervised learning problems. It introduces fundamental concepts and algorithms by building on first principles, while also exposing the reader to more advanced topics with extensive pointers to the literature, within a unified notation and mathematical framework. The material is organized according to clearly defined categories, such as discriminative and generative models, frequentist and Bayesian approaches, exact and approximate inference, as well as directed and undirected models. This monograph is meant as an entry point for researchers with an engineering background in probability and linear algebra.
doi_str_mv 10.1561/2000000102
format Article
fullrecord <record><control><sourceid>now_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1561_2000000102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>612000000102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4801-5cc00bae8585b05869b7b576804dd1909817b80a57637686d77e6049d21b263f3</originalsourceid><addsrcrecordid>eNptj81LAzEQxYMfYFu9ePaQkwdh7cxmk80ea6laqHjRc9jNJnVLTUp2F_W_N7ZiETowDLz3Y3iPkEuEW-QCxylsByE9IgMsWJpIxrNjMkQhQbIsZ_Lkz8jEGRm27QpAAGc4IGJC70JjLJ27Lvi6113jHe08fSr1W-MMXZgyuMYtqfWBztwyaia05-TUluvWXPzeEXm9n71MH5PF88N8OlkkOpOACdcaoCqN5JJXwKUoqrzieQyW1TUWUEjMKwlllFhURZ3nRkBW1ClWqWCWjcjN7q8Ovm2DsWoTmvcyfCkE9VNf7etH-GoHO_-hIqSVwH_29d5e-T64mPzwn_EBcA-oTW23a_v1ujOfHfsGTd1q8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Brief Introduction to Machine Learning for Engineers</title><source>Foundations and Trends in Technology</source><creator>Simeone, Osvaldo</creator><creatorcontrib>Simeone, Osvaldo</creatorcontrib><description>This monograph aims at providing an introduction to key concepts, algorithms, and theoretical results in machine learning. The treatment concentrates on probabilistic models for supervised and unsupervised learning problems. It introduces fundamental concepts and algorithms by building on first principles, while also exposing the reader to more advanced topics with extensive pointers to the literature, within a unified notation and mathematical framework. The material is organized according to clearly defined categories, such as discriminative and generative models, frequentist and Bayesian approaches, exact and approximate inference, as well as directed and undirected models. This monograph is meant as an entry point for researchers with an engineering background in probability and linear algebra.</description><identifier>ISSN: 1932-8346</identifier><identifier>ISBN: 1680834738</identifier><identifier>ISBN: 9781680834734</identifier><identifier>EISSN: 1932-8354</identifier><identifier>DOI: 10.1561/2000000102</identifier><language>eng</language><publisher>Boston - Delft: Now Publishers</publisher><subject>Bayesian learning ; Classification and prediction ; Clustering ; Computer Science ; Engineering ; Engineering mathematics ; Graphical models ; Image and video processing ; Machine Learning ; Signal Processing ; Technology</subject><ispartof>Foundations and trends in signal processing, 2018-01, Vol.12 (3-4), p.200-431</ispartof><rights>2018 O. Simeone</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4801-5cc00bae8585b05869b7b576804dd1909817b80a57637686d77e6049d21b263f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4135,27924,27925</link.rule.ids></links><search><creatorcontrib>Simeone, Osvaldo</creatorcontrib><title>A Brief Introduction to Machine Learning for Engineers</title><title>Foundations and trends in signal processing</title><addtitle>SIG</addtitle><description>This monograph aims at providing an introduction to key concepts, algorithms, and theoretical results in machine learning. The treatment concentrates on probabilistic models for supervised and unsupervised learning problems. It introduces fundamental concepts and algorithms by building on first principles, while also exposing the reader to more advanced topics with extensive pointers to the literature, within a unified notation and mathematical framework. The material is organized according to clearly defined categories, such as discriminative and generative models, frequentist and Bayesian approaches, exact and approximate inference, as well as directed and undirected models. This monograph is meant as an entry point for researchers with an engineering background in probability and linear algebra.</description><subject>Bayesian learning</subject><subject>Classification and prediction</subject><subject>Clustering</subject><subject>Computer Science</subject><subject>Engineering</subject><subject>Engineering mathematics</subject><subject>Graphical models</subject><subject>Image and video processing</subject><subject>Machine Learning</subject><subject>Signal Processing</subject><subject>Technology</subject><issn>1932-8346</issn><issn>1932-8354</issn><isbn>1680834738</isbn><isbn>9781680834734</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>NOJ</sourceid><recordid>eNptj81LAzEQxYMfYFu9ePaQkwdh7cxmk80ea6laqHjRc9jNJnVLTUp2F_W_N7ZiETowDLz3Y3iPkEuEW-QCxylsByE9IgMsWJpIxrNjMkQhQbIsZ_Lkz8jEGRm27QpAAGc4IGJC70JjLJ27Lvi6113jHe08fSr1W-MMXZgyuMYtqfWBztwyaia05-TUluvWXPzeEXm9n71MH5PF88N8OlkkOpOACdcaoCqN5JJXwKUoqrzieQyW1TUWUEjMKwlllFhURZ3nRkBW1ClWqWCWjcjN7q8Ovm2DsWoTmvcyfCkE9VNf7etH-GoHO_-hIqSVwH_29d5e-T64mPzwn_EBcA-oTW23a_v1ujOfHfsGTd1q8g</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Simeone, Osvaldo</creator><general>Now Publishers</general><scope>NOJ</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180101</creationdate><title>A Brief Introduction to Machine Learning for Engineers</title><author>Simeone, Osvaldo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4801-5cc00bae8585b05869b7b576804dd1909817b80a57637686d77e6049d21b263f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian learning</topic><topic>Classification and prediction</topic><topic>Clustering</topic><topic>Computer Science</topic><topic>Engineering</topic><topic>Engineering mathematics</topic><topic>Graphical models</topic><topic>Image and video processing</topic><topic>Machine Learning</topic><topic>Signal Processing</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simeone, Osvaldo</creatorcontrib><collection>Now Publishers Journals</collection><collection>CrossRef</collection><jtitle>Foundations and trends in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simeone, Osvaldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Brief Introduction to Machine Learning for Engineers</atitle><jtitle>Foundations and trends in signal processing</jtitle><addtitle>SIG</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>12</volume><issue>3-4</issue><spage>200</spage><epage>431</epage><pages>200-431</pages><issn>1932-8346</issn><eissn>1932-8354</eissn><isbn>1680834738</isbn><isbn>9781680834734</isbn><abstract>This monograph aims at providing an introduction to key concepts, algorithms, and theoretical results in machine learning. The treatment concentrates on probabilistic models for supervised and unsupervised learning problems. It introduces fundamental concepts and algorithms by building on first principles, while also exposing the reader to more advanced topics with extensive pointers to the literature, within a unified notation and mathematical framework. The material is organized according to clearly defined categories, such as discriminative and generative models, frequentist and Bayesian approaches, exact and approximate inference, as well as directed and undirected models. This monograph is meant as an entry point for researchers with an engineering background in probability and linear algebra.</abstract><cop>Boston - Delft</cop><pub>Now Publishers</pub><doi>10.1561/2000000102</doi><tpages>236</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-8346
ispartof Foundations and trends in signal processing, 2018-01, Vol.12 (3-4), p.200-431
issn 1932-8346
1932-8354
language eng
recordid cdi_crossref_primary_10_1561_2000000102
source Foundations and Trends in Technology
subjects Bayesian learning
Classification and prediction
Clustering
Computer Science
Engineering
Engineering mathematics
Graphical models
Image and video processing
Machine Learning
Signal Processing
Technology
title A Brief Introduction to Machine Learning for Engineers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-now_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Brief%20Introduction%20to%20Machine%20Learning%20for%20Engineers&rft.jtitle=Foundations%20and%20trends%20in%20signal%20processing&rft.au=Simeone,%20Osvaldo&rft.date=2018-01-01&rft.volume=12&rft.issue=3-4&rft.spage=200&rft.epage=431&rft.pages=200-431&rft.issn=1932-8346&rft.eissn=1932-8354&rft.isbn=1680834738&rft.isbn_list=9781680834734&rft_id=info:doi/10.1561/2000000102&rft_dat=%3Cnow_cross%3E612000000102%3C/now_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true