Cyber-physical recreation of six DOF industrial robot arm

The Cyber-Physical and Vehicle Manufacturing Laboratory, a model Industry 4.0 laboratory, is applying new innovative solutions to improve the quality of education. As part of this, a digital twin of the lab was designed and built, where users can practice. In the virtual space, it is possible to app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International review of applied sciences and engineering (Online) 2024-08, Vol.15 (2), p.147-160
Hauptverfasser: Erdei, Timotei István, Nusser, Dávid Péter, Husi, Géza
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 160
container_issue 2
container_start_page 147
container_title International review of applied sciences and engineering (Online)
container_volume 15
creator Erdei, Timotei István
Nusser, Dávid Péter
Husi, Géza
description The Cyber-Physical and Vehicle Manufacturing Laboratory, a model Industry 4.0 laboratory, is applying new innovative solutions to improve the quality of education. As part of this, a digital twin of the lab was designed and built, where users can practice. In the virtual space, it is possible to apply the known robot motion types, and the tool centre and wrist speed have been measured virtually. Robot control tasks can be performed “offline” using parameters. This information can then be transferred to the actual physical robot unit. The stable diffusion 1.5 deep learning model generates 2D geometric shapes for trajectory, allowing users to perform unique tasks during education. The Google Colab cloud-based service was used to teach our rendered-type dataset. For the 3D simulation frame, we used V-REP, which was developed on a desktop PC equipped with an Intel Core i5 7600K processor, Nvidia GTX1070 VGA with 8 GB of DDR5 VRAM, and 64 GB of DDR4 memory modules. The following material describes an existing industrial six-axis robot arm and its implementation, which can be controlled and programmed while performing virtual measurements after integrating into a Cyber-Physical system and using deep learning techniques.
doi_str_mv 10.1556/1848.2023.00660
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1556_1848_2023_00660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1556_1848_2023_00660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1200-338318c1a423fe58c578bd9d3a614a102a23c49f1b5f2065172246bd9a9541ee3</originalsourceid><addsrcrecordid>eNotj8tOwzAURC0EElXpmq1_wOm914_YSxQoVKrUDawjx3FEUNtUdpDI39MUVjOLo9Ecxh4RCtTarNEqWxCQLACMgRu2IDBSKDLu9tpJgEW4Z6ucvwCArHKqpAVz1dTEJM6fU-6DP_AUQ4p-7IcTHzqe-x_-vN_w_tR-5zH1MzA0w8h9Oj6wu84fclz955J9bF7eqzex279uq6edCEgAQkor0Qb0imQXtQ26tE3rWukNKo9AnmRQrsNGd5efGksiZS6Ed1phjHLJ1n-7IQ05p9jV59QffZpqhHqWr2f5epavr_LyF6WoSiU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cyber-physical recreation of six DOF industrial robot arm</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Erdei, Timotei István ; Nusser, Dávid Péter ; Husi, Géza</creator><creatorcontrib>Erdei, Timotei István ; Nusser, Dávid Péter ; Husi, Géza</creatorcontrib><description>The Cyber-Physical and Vehicle Manufacturing Laboratory, a model Industry 4.0 laboratory, is applying new innovative solutions to improve the quality of education. As part of this, a digital twin of the lab was designed and built, where users can practice. In the virtual space, it is possible to apply the known robot motion types, and the tool centre and wrist speed have been measured virtually. Robot control tasks can be performed “offline” using parameters. This information can then be transferred to the actual physical robot unit. The stable diffusion 1.5 deep learning model generates 2D geometric shapes for trajectory, allowing users to perform unique tasks during education. The Google Colab cloud-based service was used to teach our rendered-type dataset. For the 3D simulation frame, we used V-REP, which was developed on a desktop PC equipped with an Intel Core i5 7600K processor, Nvidia GTX1070 VGA with 8 GB of DDR5 VRAM, and 64 GB of DDR4 memory modules. The following material describes an existing industrial six-axis robot arm and its implementation, which can be controlled and programmed while performing virtual measurements after integrating into a Cyber-Physical system and using deep learning techniques.</description><identifier>ISSN: 2062-0810</identifier><identifier>EISSN: 2063-4269</identifier><identifier>DOI: 10.1556/1848.2023.00660</identifier><language>eng</language><ispartof>International review of applied sciences and engineering (Online), 2024-08, Vol.15 (2), p.147-160</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1200-338318c1a423fe58c578bd9d3a614a102a23c49f1b5f2065172246bd9a9541ee3</cites><orcidid>0000-0001-6303-5946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Erdei, Timotei István</creatorcontrib><creatorcontrib>Nusser, Dávid Péter</creatorcontrib><creatorcontrib>Husi, Géza</creatorcontrib><title>Cyber-physical recreation of six DOF industrial robot arm</title><title>International review of applied sciences and engineering (Online)</title><description>The Cyber-Physical and Vehicle Manufacturing Laboratory, a model Industry 4.0 laboratory, is applying new innovative solutions to improve the quality of education. As part of this, a digital twin of the lab was designed and built, where users can practice. In the virtual space, it is possible to apply the known robot motion types, and the tool centre and wrist speed have been measured virtually. Robot control tasks can be performed “offline” using parameters. This information can then be transferred to the actual physical robot unit. The stable diffusion 1.5 deep learning model generates 2D geometric shapes for trajectory, allowing users to perform unique tasks during education. The Google Colab cloud-based service was used to teach our rendered-type dataset. For the 3D simulation frame, we used V-REP, which was developed on a desktop PC equipped with an Intel Core i5 7600K processor, Nvidia GTX1070 VGA with 8 GB of DDR5 VRAM, and 64 GB of DDR4 memory modules. The following material describes an existing industrial six-axis robot arm and its implementation, which can be controlled and programmed while performing virtual measurements after integrating into a Cyber-Physical system and using deep learning techniques.</description><issn>2062-0810</issn><issn>2063-4269</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotj8tOwzAURC0EElXpmq1_wOm914_YSxQoVKrUDawjx3FEUNtUdpDI39MUVjOLo9Ecxh4RCtTarNEqWxCQLACMgRu2IDBSKDLu9tpJgEW4Z6ucvwCArHKqpAVz1dTEJM6fU-6DP_AUQ4p-7IcTHzqe-x_-vN_w_tR-5zH1MzA0w8h9Oj6wu84fclz955J9bF7eqzex279uq6edCEgAQkor0Qb0imQXtQ26tE3rWukNKo9AnmRQrsNGd5efGksiZS6Ed1phjHLJ1n-7IQ05p9jV59QffZpqhHqWr2f5epavr_LyF6WoSiU</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Erdei, Timotei István</creator><creator>Nusser, Dávid Péter</creator><creator>Husi, Géza</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6303-5946</orcidid></search><sort><creationdate>20240801</creationdate><title>Cyber-physical recreation of six DOF industrial robot arm</title><author>Erdei, Timotei István ; Nusser, Dávid Péter ; Husi, Géza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1200-338318c1a423fe58c578bd9d3a614a102a23c49f1b5f2065172246bd9a9541ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erdei, Timotei István</creatorcontrib><creatorcontrib>Nusser, Dávid Péter</creatorcontrib><creatorcontrib>Husi, Géza</creatorcontrib><collection>CrossRef</collection><jtitle>International review of applied sciences and engineering (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erdei, Timotei István</au><au>Nusser, Dávid Péter</au><au>Husi, Géza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyber-physical recreation of six DOF industrial robot arm</atitle><jtitle>International review of applied sciences and engineering (Online)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>15</volume><issue>2</issue><spage>147</spage><epage>160</epage><pages>147-160</pages><issn>2062-0810</issn><eissn>2063-4269</eissn><abstract>The Cyber-Physical and Vehicle Manufacturing Laboratory, a model Industry 4.0 laboratory, is applying new innovative solutions to improve the quality of education. As part of this, a digital twin of the lab was designed and built, where users can practice. In the virtual space, it is possible to apply the known robot motion types, and the tool centre and wrist speed have been measured virtually. Robot control tasks can be performed “offline” using parameters. This information can then be transferred to the actual physical robot unit. The stable diffusion 1.5 deep learning model generates 2D geometric shapes for trajectory, allowing users to perform unique tasks during education. The Google Colab cloud-based service was used to teach our rendered-type dataset. For the 3D simulation frame, we used V-REP, which was developed on a desktop PC equipped with an Intel Core i5 7600K processor, Nvidia GTX1070 VGA with 8 GB of DDR5 VRAM, and 64 GB of DDR4 memory modules. The following material describes an existing industrial six-axis robot arm and its implementation, which can be controlled and programmed while performing virtual measurements after integrating into a Cyber-Physical system and using deep learning techniques.</abstract><doi>10.1556/1848.2023.00660</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6303-5946</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2062-0810
ispartof International review of applied sciences and engineering (Online), 2024-08, Vol.15 (2), p.147-160
issn 2062-0810
2063-4269
language eng
recordid cdi_crossref_primary_10_1556_1848_2023_00660
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Cyber-physical recreation of six DOF industrial robot arm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A09%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyber-physical%20recreation%20of%20six%20DOF%20industrial%20robot%20arm&rft.jtitle=International%20review%20of%20applied%20sciences%20and%20engineering%20(Online)&rft.au=Erdei,%20Timotei%20Istv%C3%A1n&rft.date=2024-08-01&rft.volume=15&rft.issue=2&rft.spage=147&rft.epage=160&rft.pages=147-160&rft.issn=2062-0810&rft.eissn=2063-4269&rft_id=info:doi/10.1556/1848.2023.00660&rft_dat=%3Ccrossref%3E10_1556_1848_2023_00660%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true