Multi-Stepped Optogenetics: A Novel Strategy to Analyze Neural Network Formation and Animal Behaviors by Photo-Regulation of Local Gene Expression, Fluorescent Color and Neural Excitation

The brain is one of the most complicated structures in nature. Zebrafish is a useful model to study development of vertebrate brain, because it is transparent at early embryonic stage and it develops rapidly outside of the body. We made a series of transgenic zebrafish expressing green-fluorescent p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Denki Gakkai ronbunshi. C, Erekutoronikusu, joho kogaku, shisutemu Information and Systems, 2010/10/01, Vol.130(10), pp.1711-1716
Hauptverfasser: Hatta, Kohei, Nakajima, Yohei, Isoda, Erika, Itoh, Mariko, Yamamoto, Tamami
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1716
container_issue 10
container_start_page 1711
container_title Denki Gakkai ronbunshi. C, Erekutoronikusu, joho kogaku, shisutemu
container_volume 130
creator Hatta, Kohei
Nakajima, Yohei
Isoda, Erika
Itoh, Mariko
Yamamoto, Tamami
description The brain is one of the most complicated structures in nature. Zebrafish is a useful model to study development of vertebrate brain, because it is transparent at early embryonic stage and it develops rapidly outside of the body. We made a series of transgenic zebrafish expressing green-fluorescent protein related molecules, for example, Kaede and KikGR, whose green fluorescence can be irreversibly converted to red upon irradiation with ultra-violet (UV) or violet light, and Dronpa, whose green fluorescence is eliminated with strong blue light but can be reactivated upon irradiation with UV or violet-light. We have recently shown that infrared laser evoked gene operator (IR-LEGO) which causes a focused heat shock could locally induce these fluorescent proteins and the other genes. Neural cell migration and axonal pattern formation in living brain could be visualized by this technique. We also can express channel rhodopsine 2 (ChR2), a photoactivatable cation channel, or Natronomonas pharaonis halorhodopsin (NpHR), a photoactivatable chloride ion pump, locally in the nervous system by IR. Then, behaviors of these animals can be controlled by activating or silencing the local neurons by light. This novel strategy is useful in discovering neurons and circuits responsible for a wide variety of animal behaviors. We proposed to call this method ‘multi-stepped optogenetics’.
doi_str_mv 10.1541/ieejeiss.130.1711
format Article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1541_ieejeiss_130_1711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_ieejeiss_130_10_130_10_1711_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2531-1179a12d89238f712dbc137d3a713440514cd215c24bc5d02798d254b122bfbd3</originalsourceid><addsrcrecordid>eNpdUctOwzAQtBBIVMAHcPMHEMjasZJyK1ULlUpBPM6R42xaFzeObBcov8bPYSj0wGls78ysd4eQU0jPQWRwoRGXqL0_Bx5fcoA90gOeFUkBQuyTXsoLkWSMwSE58V5Xacqygkdej3zerk3QyWPArsOa3nXBzrHFoJW_pAM6s69o6GNwMuB8Q4Olg1aazQfSGa6dNBHCm3UvdGzdSgZtWyrbOpL0KhavcCFftXWeVht6v7DBJg84X5st0TZ0alWkXceGdPTeOYyfs-0ZHZu1jReFbaBDa6z7Mf3tOHpXOvw4HJODRhqPJ794RJ7Ho6fhTTK9u54MB9NEMcEhAcj7Elhd9BkvmjyeKgU8r7nM45KyVECmagZCsaxSok5Z3i9qJrIKGKuaquZHBLa-ylnvHTZl5-J8blNCWn4HUP4FUMYAyu8Aomay1Sx9kHPcKaSLqzX4T5HuIGp3HLWQrsSWfwGBLZhI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-Stepped Optogenetics: A Novel Strategy to Analyze Neural Network Formation and Animal Behaviors by Photo-Regulation of Local Gene Expression, Fluorescent Color and Neural Excitation</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hatta, Kohei ; Nakajima, Yohei ; Isoda, Erika ; Itoh, Mariko ; Yamamoto, Tamami</creator><creatorcontrib>Hatta, Kohei ; Nakajima, Yohei ; Isoda, Erika ; Itoh, Mariko ; Yamamoto, Tamami</creatorcontrib><description>The brain is one of the most complicated structures in nature. Zebrafish is a useful model to study development of vertebrate brain, because it is transparent at early embryonic stage and it develops rapidly outside of the body. We made a series of transgenic zebrafish expressing green-fluorescent protein related molecules, for example, Kaede and KikGR, whose green fluorescence can be irreversibly converted to red upon irradiation with ultra-violet (UV) or violet light, and Dronpa, whose green fluorescence is eliminated with strong blue light but can be reactivated upon irradiation with UV or violet-light. We have recently shown that infrared laser evoked gene operator (IR-LEGO) which causes a focused heat shock could locally induce these fluorescent proteins and the other genes. Neural cell migration and axonal pattern formation in living brain could be visualized by this technique. We also can express channel rhodopsine 2 (ChR2), a photoactivatable cation channel, or Natronomonas pharaonis halorhodopsin (NpHR), a photoactivatable chloride ion pump, locally in the nervous system by IR. Then, behaviors of these animals can be controlled by activating or silencing the local neurons by light. This novel strategy is useful in discovering neurons and circuits responsible for a wide variety of animal behaviors. We proposed to call this method ‘multi-stepped optogenetics’.</description><identifier>ISSN: 0385-4221</identifier><identifier>EISSN: 1348-8155</identifier><identifier>DOI: 10.1541/ieejeiss.130.1711</identifier><language>eng ; jpn</language><publisher>The Institute of Electrical Engineers of Japan</publisher><subject>ChR2 ; Dronpa ; IR-LEGO ; Kaede ; NpHR ; zebrafish</subject><ispartof>IEEJ Transactions on Electronics, Information and Systems, 2010/10/01, Vol.130(10), pp.1711-1716</ispartof><rights>2010 by the Institute of Electrical Engineers of Japan</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2531-1179a12d89238f712dbc137d3a713440514cd215c24bc5d02798d254b122bfbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Hatta, Kohei</creatorcontrib><creatorcontrib>Nakajima, Yohei</creatorcontrib><creatorcontrib>Isoda, Erika</creatorcontrib><creatorcontrib>Itoh, Mariko</creatorcontrib><creatorcontrib>Yamamoto, Tamami</creatorcontrib><title>Multi-Stepped Optogenetics: A Novel Strategy to Analyze Neural Network Formation and Animal Behaviors by Photo-Regulation of Local Gene Expression, Fluorescent Color and Neural Excitation</title><title>Denki Gakkai ronbunshi. C, Erekutoronikusu, joho kogaku, shisutemu</title><addtitle>IEEJ Trans. EIS</addtitle><description>The brain is one of the most complicated structures in nature. Zebrafish is a useful model to study development of vertebrate brain, because it is transparent at early embryonic stage and it develops rapidly outside of the body. We made a series of transgenic zebrafish expressing green-fluorescent protein related molecules, for example, Kaede and KikGR, whose green fluorescence can be irreversibly converted to red upon irradiation with ultra-violet (UV) or violet light, and Dronpa, whose green fluorescence is eliminated with strong blue light but can be reactivated upon irradiation with UV or violet-light. We have recently shown that infrared laser evoked gene operator (IR-LEGO) which causes a focused heat shock could locally induce these fluorescent proteins and the other genes. Neural cell migration and axonal pattern formation in living brain could be visualized by this technique. We also can express channel rhodopsine 2 (ChR2), a photoactivatable cation channel, or Natronomonas pharaonis halorhodopsin (NpHR), a photoactivatable chloride ion pump, locally in the nervous system by IR. Then, behaviors of these animals can be controlled by activating or silencing the local neurons by light. This novel strategy is useful in discovering neurons and circuits responsible for a wide variety of animal behaviors. We proposed to call this method ‘multi-stepped optogenetics’.</description><subject>ChR2</subject><subject>Dronpa</subject><subject>IR-LEGO</subject><subject>Kaede</subject><subject>NpHR</subject><subject>zebrafish</subject><issn>0385-4221</issn><issn>1348-8155</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdUctOwzAQtBBIVMAHcPMHEMjasZJyK1ULlUpBPM6R42xaFzeObBcov8bPYSj0wGls78ysd4eQU0jPQWRwoRGXqL0_Bx5fcoA90gOeFUkBQuyTXsoLkWSMwSE58V5Xacqygkdej3zerk3QyWPArsOa3nXBzrHFoJW_pAM6s69o6GNwMuB8Q4Olg1aazQfSGa6dNBHCm3UvdGzdSgZtWyrbOpL0KhavcCFftXWeVht6v7DBJg84X5st0TZ0alWkXceGdPTeOYyfs-0ZHZu1jReFbaBDa6z7Mf3tOHpXOvw4HJODRhqPJ794RJ7Ho6fhTTK9u54MB9NEMcEhAcj7Elhd9BkvmjyeKgU8r7nM45KyVECmagZCsaxSok5Z3i9qJrIKGKuaquZHBLa-ylnvHTZl5-J8blNCWn4HUP4FUMYAyu8Aomay1Sx9kHPcKaSLqzX4T5HuIGp3HLWQrsSWfwGBLZhI</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Hatta, Kohei</creator><creator>Nakajima, Yohei</creator><creator>Isoda, Erika</creator><creator>Itoh, Mariko</creator><creator>Yamamoto, Tamami</creator><general>The Institute of Electrical Engineers of Japan</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2010</creationdate><title>Multi-Stepped Optogenetics: A Novel Strategy to Analyze Neural Network Formation and Animal Behaviors by Photo-Regulation of Local Gene Expression, Fluorescent Color and Neural Excitation</title><author>Hatta, Kohei ; Nakajima, Yohei ; Isoda, Erika ; Itoh, Mariko ; Yamamoto, Tamami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2531-1179a12d89238f712dbc137d3a713440514cd215c24bc5d02798d254b122bfbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2010</creationdate><topic>ChR2</topic><topic>Dronpa</topic><topic>IR-LEGO</topic><topic>Kaede</topic><topic>NpHR</topic><topic>zebrafish</topic><toplevel>online_resources</toplevel><creatorcontrib>Hatta, Kohei</creatorcontrib><creatorcontrib>Nakajima, Yohei</creatorcontrib><creatorcontrib>Isoda, Erika</creatorcontrib><creatorcontrib>Itoh, Mariko</creatorcontrib><creatorcontrib>Yamamoto, Tamami</creatorcontrib><collection>CrossRef</collection><jtitle>Denki Gakkai ronbunshi. C, Erekutoronikusu, joho kogaku, shisutemu</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hatta, Kohei</au><au>Nakajima, Yohei</au><au>Isoda, Erika</au><au>Itoh, Mariko</au><au>Yamamoto, Tamami</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Stepped Optogenetics: A Novel Strategy to Analyze Neural Network Formation and Animal Behaviors by Photo-Regulation of Local Gene Expression, Fluorescent Color and Neural Excitation</atitle><jtitle>Denki Gakkai ronbunshi. C, Erekutoronikusu, joho kogaku, shisutemu</jtitle><addtitle>IEEJ Trans. EIS</addtitle><date>2010</date><risdate>2010</risdate><volume>130</volume><issue>10</issue><spage>1711</spage><epage>1716</epage><pages>1711-1716</pages><issn>0385-4221</issn><eissn>1348-8155</eissn><abstract>The brain is one of the most complicated structures in nature. Zebrafish is a useful model to study development of vertebrate brain, because it is transparent at early embryonic stage and it develops rapidly outside of the body. We made a series of transgenic zebrafish expressing green-fluorescent protein related molecules, for example, Kaede and KikGR, whose green fluorescence can be irreversibly converted to red upon irradiation with ultra-violet (UV) or violet light, and Dronpa, whose green fluorescence is eliminated with strong blue light but can be reactivated upon irradiation with UV or violet-light. We have recently shown that infrared laser evoked gene operator (IR-LEGO) which causes a focused heat shock could locally induce these fluorescent proteins and the other genes. Neural cell migration and axonal pattern formation in living brain could be visualized by this technique. We also can express channel rhodopsine 2 (ChR2), a photoactivatable cation channel, or Natronomonas pharaonis halorhodopsin (NpHR), a photoactivatable chloride ion pump, locally in the nervous system by IR. Then, behaviors of these animals can be controlled by activating or silencing the local neurons by light. This novel strategy is useful in discovering neurons and circuits responsible for a wide variety of animal behaviors. We proposed to call this method ‘multi-stepped optogenetics’.</abstract><pub>The Institute of Electrical Engineers of Japan</pub><doi>10.1541/ieejeiss.130.1711</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0385-4221
ispartof IEEJ Transactions on Electronics, Information and Systems, 2010/10/01, Vol.130(10), pp.1711-1716
issn 0385-4221
1348-8155
language eng ; jpn
recordid cdi_crossref_primary_10_1541_ieejeiss_130_1711
source EZB-FREE-00999 freely available EZB journals
subjects ChR2
Dronpa
IR-LEGO
Kaede
NpHR
zebrafish
title Multi-Stepped Optogenetics: A Novel Strategy to Analyze Neural Network Formation and Animal Behaviors by Photo-Regulation of Local Gene Expression, Fluorescent Color and Neural Excitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T07%3A49%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Stepped%20Optogenetics:%20A%20Novel%20Strategy%20to%20Analyze%20Neural%20Network%20Formation%20and%20Animal%20Behaviors%20by%20Photo-Regulation%20of%20Local%20Gene%20Expression,%20Fluorescent%20Color%20and%20Neural%20Excitation&rft.jtitle=Denki%20Gakkai%20ronbunshi.%20C,%20Erekutoronikusu,%20joho%20kogaku,%20shisutemu&rft.au=Hatta,%20Kohei&rft.date=2010&rft.volume=130&rft.issue=10&rft.spage=1711&rft.epage=1716&rft.pages=1711-1716&rft.issn=0385-4221&rft.eissn=1348-8155&rft_id=info:doi/10.1541/ieejeiss.130.1711&rft_dat=%3Cjstage_cross%3Earticle_ieejeiss_130_10_130_10_1711_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true