Bose–Einstein Condensation as a Deposition Phase Transition of Quantum Hard Spheres and New Relations between Bosonic and Fermionic Pressures
We investigate the phase transition of Bose–Einstein particles with the hard-core repulsion in the grand canonical ensemble within the Van der Waals approximation. It is shown that the pressure of non-relativistic Bose–Einstein particles is mathematically equivalent to the pressure of simplified ver...
Gespeichert in:
Veröffentlicht in: | UKRAINIAN JOURNAL OF PHYSICS 2020-01, Vol.65 (11), p.963 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 963 |
container_title | UKRAINIAN JOURNAL OF PHYSICS |
container_volume | 65 |
creator | Bugaev, К.А. Ivanytskyi, O.I. Grinyuk, B.E. Yakimenko, I.P. |
description | We investigate the phase transition of Bose–Einstein particles with the hard-core repulsion in the grand canonical ensemble within the Van der Waals approximation. It is shown that the pressure of non-relativistic Bose–Einstein particles is mathematically equivalent to the pressure of simplified version of the statistical multifragmentation model of nuclei with the vanishing surface tension coefficient and the Fisher exponent тF = 5/2 , which for such parameters has the 1-st order phase transition. The found similarity of these equations of state allows us to show that within the present approach the high density phase of Bose-Einstein particles is a classical macro-cluster with vanishing entropy at any temperature which, similarly to the system of classical hard spheres, is a kind of solid state. To show this we establish new relations which allow us to identically represent the pressure of Fermi–Dirac particles in terms of pressures of Bose–Einstein particles of two sorts. |
doi_str_mv | 10.15407/ujpe65.11.963 |
format | Article |
fullrecord | <record><control><sourceid>swepub_cross</sourceid><recordid>TN_cdi_crossref_primary_10_15407_ujpe65_11_963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_DiVA_org_liu_172340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-2222185075fe818465a7bb61343f4d665b34006fea574796235fcf339424a25c3</originalsourceid><addsrcrecordid>eNo9UMtOwzAQjBBIlMKVs38gIY5fzbH0QZEqKFC4Wk66oa5aO7ITVdz4Aw78IV-ClVbdw740M6udKLrFaYIZTcVdu6mBswTjJOfkLOplqcBxinN6fuoH_DK68n6TppxTLHrRz7318Pf9O9HGN6ANGlmzAuNVo61ByiOFxlBbr7t5sVYe0NIpc1zYCr20yjTtDs2UW6G3eg0OAsus0BPs0StsOyWPCmj2AAaFe9boskNMwe10Ny0CybchXUcXldp6uDnWfvQ-nSxHs3j-_PA4Gs7jMhOiibMQeMBSwSoY4AHlTImi4JhQUtEV56wgNPxYgWKCipxnhFVlRUhOM6oyVpJ-FB90_R7qtpC10zvlvqRVWo71x1Ba9ym3upVYZEEq4JMDvnTWewfViYFT2dkvD_ZLjGWwn_wDGud7nQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bose–Einstein Condensation as a Deposition Phase Transition of Quantum Hard Spheres and New Relations between Bosonic and Fermionic Pressures</title><source>Alma/SFX Local Collection</source><creator>Bugaev, К.А. ; Ivanytskyi, O.I. ; Grinyuk, B.E. ; Yakimenko, I.P.</creator><creatorcontrib>Bugaev, К.А. ; Ivanytskyi, O.I. ; Grinyuk, B.E. ; Yakimenko, I.P.</creatorcontrib><description>We investigate the phase transition of Bose–Einstein particles with the hard-core repulsion in the grand canonical ensemble within the Van der Waals approximation. It is shown that the pressure of non-relativistic Bose–Einstein particles is mathematically equivalent to the pressure of simplified version of the statistical multifragmentation model of nuclei with the vanishing surface tension coefficient and the Fisher exponent тF = 5/2 , which for such parameters has the 1-st order phase transition. The found similarity of these equations of state allows us to show that within the present approach the high density phase of Bose-Einstein particles is a classical macro-cluster with vanishing entropy at any temperature which, similarly to the system of classical hard spheres, is a kind of solid state. To show this we establish new relations which allow us to identically represent the pressure of Fermi–Dirac particles in terms of pressures of Bose–Einstein particles of two sorts.</description><identifier>ISSN: 2071-0186</identifier><identifier>EISSN: 2071-0194</identifier><identifier>DOI: 10.15407/ujpe65.11.963</identifier><language>eng</language><ispartof>UKRAINIAN JOURNAL OF PHYSICS, 2020-01, Vol.65 (11), p.963</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-2222185075fe818465a7bb61343f4d665b34006fea574796235fcf339424a25c3</citedby><cites>FETCH-LOGICAL-c277t-2222185075fe818465a7bb61343f4d665b34006fea574796235fcf339424a25c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-172340$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Bugaev, К.А.</creatorcontrib><creatorcontrib>Ivanytskyi, O.I.</creatorcontrib><creatorcontrib>Grinyuk, B.E.</creatorcontrib><creatorcontrib>Yakimenko, I.P.</creatorcontrib><title>Bose–Einstein Condensation as a Deposition Phase Transition of Quantum Hard Spheres and New Relations between Bosonic and Fermionic Pressures</title><title>UKRAINIAN JOURNAL OF PHYSICS</title><description>We investigate the phase transition of Bose–Einstein particles with the hard-core repulsion in the grand canonical ensemble within the Van der Waals approximation. It is shown that the pressure of non-relativistic Bose–Einstein particles is mathematically equivalent to the pressure of simplified version of the statistical multifragmentation model of nuclei with the vanishing surface tension coefficient and the Fisher exponent тF = 5/2 , which for such parameters has the 1-st order phase transition. The found similarity of these equations of state allows us to show that within the present approach the high density phase of Bose-Einstein particles is a classical macro-cluster with vanishing entropy at any temperature which, similarly to the system of classical hard spheres, is a kind of solid state. To show this we establish new relations which allow us to identically represent the pressure of Fermi–Dirac particles in terms of pressures of Bose–Einstein particles of two sorts.</description><issn>2071-0186</issn><issn>2071-0194</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQjBBIlMKVs38gIY5fzbH0QZEqKFC4Wk66oa5aO7ITVdz4Aw78IV-ClVbdw740M6udKLrFaYIZTcVdu6mBswTjJOfkLOplqcBxinN6fuoH_DK68n6TppxTLHrRz7318Pf9O9HGN6ANGlmzAuNVo61ByiOFxlBbr7t5sVYe0NIpc1zYCr20yjTtDs2UW6G3eg0OAsus0BPs0StsOyWPCmj2AAaFe9boskNMwe10Ny0CybchXUcXldp6uDnWfvQ-nSxHs3j-_PA4Gs7jMhOiibMQeMBSwSoY4AHlTImi4JhQUtEV56wgNPxYgWKCipxnhFVlRUhOM6oyVpJ-FB90_R7qtpC10zvlvqRVWo71x1Ba9ym3upVYZEEq4JMDvnTWewfViYFT2dkvD_ZLjGWwn_wDGud7nQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Bugaev, К.А.</creator><creator>Ivanytskyi, O.I.</creator><creator>Grinyuk, B.E.</creator><creator>Yakimenko, I.P.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope></search><sort><creationdate>20200101</creationdate><title>Bose–Einstein Condensation as a Deposition Phase Transition of Quantum Hard Spheres and New Relations between Bosonic and Fermionic Pressures</title><author>Bugaev, К.А. ; Ivanytskyi, O.I. ; Grinyuk, B.E. ; Yakimenko, I.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-2222185075fe818465a7bb61343f4d665b34006fea574796235fcf339424a25c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Bugaev, К.А.</creatorcontrib><creatorcontrib>Ivanytskyi, O.I.</creatorcontrib><creatorcontrib>Grinyuk, B.E.</creatorcontrib><creatorcontrib>Yakimenko, I.P.</creatorcontrib><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><jtitle>UKRAINIAN JOURNAL OF PHYSICS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bugaev, К.А.</au><au>Ivanytskyi, O.I.</au><au>Grinyuk, B.E.</au><au>Yakimenko, I.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bose–Einstein Condensation as a Deposition Phase Transition of Quantum Hard Spheres and New Relations between Bosonic and Fermionic Pressures</atitle><jtitle>UKRAINIAN JOURNAL OF PHYSICS</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>65</volume><issue>11</issue><spage>963</spage><pages>963-</pages><issn>2071-0186</issn><eissn>2071-0194</eissn><abstract>We investigate the phase transition of Bose–Einstein particles with the hard-core repulsion in the grand canonical ensemble within the Van der Waals approximation. It is shown that the pressure of non-relativistic Bose–Einstein particles is mathematically equivalent to the pressure of simplified version of the statistical multifragmentation model of nuclei with the vanishing surface tension coefficient and the Fisher exponent тF = 5/2 , which for such parameters has the 1-st order phase transition. The found similarity of these equations of state allows us to show that within the present approach the high density phase of Bose-Einstein particles is a classical macro-cluster with vanishing entropy at any temperature which, similarly to the system of classical hard spheres, is a kind of solid state. To show this we establish new relations which allow us to identically represent the pressure of Fermi–Dirac particles in terms of pressures of Bose–Einstein particles of two sorts.</abstract><doi>10.15407/ujpe65.11.963</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-0186 |
ispartof | UKRAINIAN JOURNAL OF PHYSICS, 2020-01, Vol.65 (11), p.963 |
issn | 2071-0186 2071-0194 |
language | eng |
recordid | cdi_crossref_primary_10_15407_ujpe65_11_963 |
source | Alma/SFX Local Collection |
title | Bose–Einstein Condensation as a Deposition Phase Transition of Quantum Hard Spheres and New Relations between Bosonic and Fermionic Pressures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bose%E2%80%93Einstein%20Condensation%20as%20a%20Deposition%20Phase%20Transition%20of%20Quantum%20Hard%20Spheres%20and%20New%20Relations%20between%20Bosonic%20and%20Fermionic%20Pressures&rft.jtitle=UKRAINIAN%20JOURNAL%20OF%20PHYSICS&rft.au=Bugaev,%20%D0%9A.%D0%90.&rft.date=2020-01-01&rft.volume=65&rft.issue=11&rft.spage=963&rft.pages=963-&rft.issn=2071-0186&rft.eissn=2071-0194&rft_id=info:doi/10.15407/ujpe65.11.963&rft_dat=%3Cswepub_cross%3Eoai_DiVA_org_liu_172340%3C/swepub_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |