Face Identification Based on K-Nearest Neighbor

Face identification has been widely applied this time, such as security on gadgets, smart home security, and others. Face dominates as a biometric which is most increase in the next few years. Face is used for biometric identification which is considered successful among several other types of biome...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific Journal of Informatics 2019-11, Vol.6 (2), p.150-159
Hauptverfasser: Wirdiani, Ni Kadek Ayu, Hridayami, Praba, Widiari, Ni Putu Ayu, Rismawan, Komang Diva, Candradinata, Putu Bagus, Jayantha, I Putu Deva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue 2
container_start_page 150
container_title Scientific Journal of Informatics
container_volume 6
creator Wirdiani, Ni Kadek Ayu
Hridayami, Praba
Widiari, Ni Putu Ayu
Rismawan, Komang Diva
Candradinata, Putu Bagus
Jayantha, I Putu Deva
description Face identification has been widely applied this time, such as security on gadgets, smart home security, and others. Face dominates as a biometric which is most increase in the next few years. Face is used for biometric identification which is considered successful among several other types of biometrics and accurate results. Face recognition utilizes facial features for security purposes. The classification method in this paper is K-nearest Neighbor (KNN). The K-Nearest Neighbor algorithm uses neighborhood classification as the predictive value of a good instance value. K-NN includes an instance-based learning group. This paper developed face identification using Principal Component Analysis (PCA) or eigenface extraction methods. The stages of face identification research using the KNN method are pre-processing in the input image. Preprocessing used in this research are contrass stretching, grayscale, and segmentation used haar cascade. This research is registered 30 people, each person had 3 images used for training and 2 images used for testing. The results obtained from several trials of k values are as follows. Experiments with a value of k=1 get the best accuracy, namely 81%, k=2 get 53% accuracy, and k=3 get 45% accuracy.
doi_str_mv 10.15294/sji.v6i2.19503
format Article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_15294_sji_v6i2_19503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_df732f290fd04cd193b92cb4b10587ac</doaj_id><sourcerecordid>oai_doaj_org_article_df732f290fd04cd193b92cb4b10587ac</sourcerecordid><originalsourceid>FETCH-LOGICAL-c152c-1234c53da877f8aaf842179225bc8a11e74c67da3b19ef3f988a603120e8f07f3</originalsourceid><addsrcrecordid>eNo9kM1KAzEYRYMoWGrXbucFpv3yN0mWWqwWS93oOnz5qym1I8kg-PZOq7i6l7s4XA4htxTmVDIjFnWf519dZnNqJPALMmGigxZAwOWpg2pVJ_U1mdWaHQihOpAgJmSxQh-bdYjHIafsccj9sbnHGkMzlud2G7HEOjTbmHfvri835CrhocbZX07J2-rhdfnUbl4e18u7TevHP76ljAsveUCtVNKISQtGlWFMOq-R0qiE71RA7qiJiSejNXbAKYOoE6jEp2T9yw097u1nyR9Yvm2P2Z6HvuwsliH7Q7QhKc4SM5ACCB-o4c4w74SjILVCP7IWvyxf-lpLTP88Cvasz4767EmfPevjPyt7Ye8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Face Identification Based on K-Nearest Neighbor</title><source>DOAJ Directory of Open Access Journals</source><creator>Wirdiani, Ni Kadek Ayu ; Hridayami, Praba ; Widiari, Ni Putu Ayu ; Rismawan, Komang Diva ; Candradinata, Putu Bagus ; Jayantha, I Putu Deva</creator><creatorcontrib>Wirdiani, Ni Kadek Ayu ; Hridayami, Praba ; Widiari, Ni Putu Ayu ; Rismawan, Komang Diva ; Candradinata, Putu Bagus ; Jayantha, I Putu Deva</creatorcontrib><description>Face identification has been widely applied this time, such as security on gadgets, smart home security, and others. Face dominates as a biometric which is most increase in the next few years. Face is used for biometric identification which is considered successful among several other types of biometrics and accurate results. Face recognition utilizes facial features for security purposes. The classification method in this paper is K-nearest Neighbor (KNN). The K-Nearest Neighbor algorithm uses neighborhood classification as the predictive value of a good instance value. K-NN includes an instance-based learning group. This paper developed face identification using Principal Component Analysis (PCA) or eigenface extraction methods. The stages of face identification research using the KNN method are pre-processing in the input image. Preprocessing used in this research are contrass stretching, grayscale, and segmentation used haar cascade. This research is registered 30 people, each person had 3 images used for training and 2 images used for testing. The results obtained from several trials of k values are as follows. Experiments with a value of k=1 get the best accuracy, namely 81%, k=2 get 53% accuracy, and k=3 get 45% accuracy.</description><identifier>ISSN: 2407-7658</identifier><identifier>EISSN: 2460-0040</identifier><identifier>DOI: 10.15294/sji.v6i2.19503</identifier><language>eng</language><publisher>Jurusan Ilmu Komputer Universitas Negeri Semarang</publisher><subject>convolutional neural network, k-nearest neighbor, principal component analysis, haar cascade</subject><ispartof>Scientific Journal of Informatics, 2019-11, Vol.6 (2), p.150-159</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c152c-1234c53da877f8aaf842179225bc8a11e74c67da3b19ef3f988a603120e8f07f3</citedby><orcidid>0000-0002-9024-4206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Wirdiani, Ni Kadek Ayu</creatorcontrib><creatorcontrib>Hridayami, Praba</creatorcontrib><creatorcontrib>Widiari, Ni Putu Ayu</creatorcontrib><creatorcontrib>Rismawan, Komang Diva</creatorcontrib><creatorcontrib>Candradinata, Putu Bagus</creatorcontrib><creatorcontrib>Jayantha, I Putu Deva</creatorcontrib><title>Face Identification Based on K-Nearest Neighbor</title><title>Scientific Journal of Informatics</title><description>Face identification has been widely applied this time, such as security on gadgets, smart home security, and others. Face dominates as a biometric which is most increase in the next few years. Face is used for biometric identification which is considered successful among several other types of biometrics and accurate results. Face recognition utilizes facial features for security purposes. The classification method in this paper is K-nearest Neighbor (KNN). The K-Nearest Neighbor algorithm uses neighborhood classification as the predictive value of a good instance value. K-NN includes an instance-based learning group. This paper developed face identification using Principal Component Analysis (PCA) or eigenface extraction methods. The stages of face identification research using the KNN method are pre-processing in the input image. Preprocessing used in this research are contrass stretching, grayscale, and segmentation used haar cascade. This research is registered 30 people, each person had 3 images used for training and 2 images used for testing. The results obtained from several trials of k values are as follows. Experiments with a value of k=1 get the best accuracy, namely 81%, k=2 get 53% accuracy, and k=3 get 45% accuracy.</description><subject>convolutional neural network, k-nearest neighbor, principal component analysis, haar cascade</subject><issn>2407-7658</issn><issn>2460-0040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo9kM1KAzEYRYMoWGrXbucFpv3yN0mWWqwWS93oOnz5qym1I8kg-PZOq7i6l7s4XA4htxTmVDIjFnWf519dZnNqJPALMmGigxZAwOWpg2pVJ_U1mdWaHQihOpAgJmSxQh-bdYjHIafsccj9sbnHGkMzlud2G7HEOjTbmHfvri835CrhocbZX07J2-rhdfnUbl4e18u7TevHP76ljAsveUCtVNKISQtGlWFMOq-R0qiE71RA7qiJiSejNXbAKYOoE6jEp2T9yw097u1nyR9Yvm2P2Z6HvuwsliH7Q7QhKc4SM5ACCB-o4c4w74SjILVCP7IWvyxf-lpLTP88Cvasz4767EmfPevjPyt7Ye8</recordid><startdate>20191130</startdate><enddate>20191130</enddate><creator>Wirdiani, Ni Kadek Ayu</creator><creator>Hridayami, Praba</creator><creator>Widiari, Ni Putu Ayu</creator><creator>Rismawan, Komang Diva</creator><creator>Candradinata, Putu Bagus</creator><creator>Jayantha, I Putu Deva</creator><general>Jurusan Ilmu Komputer Universitas Negeri Semarang</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9024-4206</orcidid></search><sort><creationdate>20191130</creationdate><title>Face Identification Based on K-Nearest Neighbor</title><author>Wirdiani, Ni Kadek Ayu ; Hridayami, Praba ; Widiari, Ni Putu Ayu ; Rismawan, Komang Diva ; Candradinata, Putu Bagus ; Jayantha, I Putu Deva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c152c-1234c53da877f8aaf842179225bc8a11e74c67da3b19ef3f988a603120e8f07f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>convolutional neural network, k-nearest neighbor, principal component analysis, haar cascade</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wirdiani, Ni Kadek Ayu</creatorcontrib><creatorcontrib>Hridayami, Praba</creatorcontrib><creatorcontrib>Widiari, Ni Putu Ayu</creatorcontrib><creatorcontrib>Rismawan, Komang Diva</creatorcontrib><creatorcontrib>Candradinata, Putu Bagus</creatorcontrib><creatorcontrib>Jayantha, I Putu Deva</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific Journal of Informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wirdiani, Ni Kadek Ayu</au><au>Hridayami, Praba</au><au>Widiari, Ni Putu Ayu</au><au>Rismawan, Komang Diva</au><au>Candradinata, Putu Bagus</au><au>Jayantha, I Putu Deva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Face Identification Based on K-Nearest Neighbor</atitle><jtitle>Scientific Journal of Informatics</jtitle><date>2019-11-30</date><risdate>2019</risdate><volume>6</volume><issue>2</issue><spage>150</spage><epage>159</epage><pages>150-159</pages><issn>2407-7658</issn><eissn>2460-0040</eissn><abstract>Face identification has been widely applied this time, such as security on gadgets, smart home security, and others. Face dominates as a biometric which is most increase in the next few years. Face is used for biometric identification which is considered successful among several other types of biometrics and accurate results. Face recognition utilizes facial features for security purposes. The classification method in this paper is K-nearest Neighbor (KNN). The K-Nearest Neighbor algorithm uses neighborhood classification as the predictive value of a good instance value. K-NN includes an instance-based learning group. This paper developed face identification using Principal Component Analysis (PCA) or eigenface extraction methods. The stages of face identification research using the KNN method are pre-processing in the input image. Preprocessing used in this research are contrass stretching, grayscale, and segmentation used haar cascade. This research is registered 30 people, each person had 3 images used for training and 2 images used for testing. The results obtained from several trials of k values are as follows. Experiments with a value of k=1 get the best accuracy, namely 81%, k=2 get 53% accuracy, and k=3 get 45% accuracy.</abstract><pub>Jurusan Ilmu Komputer Universitas Negeri Semarang</pub><doi>10.15294/sji.v6i2.19503</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9024-4206</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2407-7658
ispartof Scientific Journal of Informatics, 2019-11, Vol.6 (2), p.150-159
issn 2407-7658
2460-0040
language eng
recordid cdi_crossref_primary_10_15294_sji_v6i2_19503
source DOAJ Directory of Open Access Journals
subjects convolutional neural network, k-nearest neighbor, principal component analysis, haar cascade
title Face Identification Based on K-Nearest Neighbor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A41%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Face%20Identification%20Based%20on%20K-Nearest%20Neighbor&rft.jtitle=Scientific%20Journal%20of%20Informatics&rft.au=Wirdiani,%20Ni%20Kadek%20Ayu&rft.date=2019-11-30&rft.volume=6&rft.issue=2&rft.spage=150&rft.epage=159&rft.pages=150-159&rft.issn=2407-7658&rft.eissn=2460-0040&rft_id=info:doi/10.15294/sji.v6i2.19503&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_df732f290fd04cd193b92cb4b10587ac%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_df732f290fd04cd193b92cb4b10587ac&rfr_iscdi=true