Face Identification Based on K-Nearest Neighbor
Face identification has been widely applied this time, such as security on gadgets, smart home security, and others. Face dominates as a biometric which is most increase in the next few years. Face is used for biometric identification which is considered successful among several other types of biome...
Gespeichert in:
Veröffentlicht in: | Scientific Journal of Informatics 2019-11, Vol.6 (2), p.150-159 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 159 |
---|---|
container_issue | 2 |
container_start_page | 150 |
container_title | Scientific Journal of Informatics |
container_volume | 6 |
creator | Wirdiani, Ni Kadek Ayu Hridayami, Praba Widiari, Ni Putu Ayu Rismawan, Komang Diva Candradinata, Putu Bagus Jayantha, I Putu Deva |
description | Face identification has been widely applied this time, such as security on gadgets, smart home security, and others. Face dominates as a biometric which is most increase in the next few years. Face is used for biometric identification which is considered successful among several other types of biometrics and accurate results. Face recognition utilizes facial features for security purposes. The classification method in this paper is K-nearest Neighbor (KNN). The K-Nearest Neighbor algorithm uses neighborhood classification as the predictive value of a good instance value. K-NN includes an instance-based learning group. This paper developed face identification using Principal Component Analysis (PCA) or eigenface extraction methods. The stages of face identification research using the KNN method are pre-processing in the input image. Preprocessing used in this research are contrass stretching, grayscale, and segmentation used haar cascade. This research is registered 30 people, each person had 3 images used for training and 2 images used for testing. The results obtained from several trials of k values are as follows. Experiments with a value of k=1 get the best accuracy, namely 81%, k=2 get 53% accuracy, and k=3 get 45% accuracy. |
doi_str_mv | 10.15294/sji.v6i2.19503 |
format | Article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_15294_sji_v6i2_19503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_df732f290fd04cd193b92cb4b10587ac</doaj_id><sourcerecordid>oai_doaj_org_article_df732f290fd04cd193b92cb4b10587ac</sourcerecordid><originalsourceid>FETCH-LOGICAL-c152c-1234c53da877f8aaf842179225bc8a11e74c67da3b19ef3f988a603120e8f07f3</originalsourceid><addsrcrecordid>eNo9kM1KAzEYRYMoWGrXbucFpv3yN0mWWqwWS93oOnz5qym1I8kg-PZOq7i6l7s4XA4htxTmVDIjFnWf519dZnNqJPALMmGigxZAwOWpg2pVJ_U1mdWaHQihOpAgJmSxQh-bdYjHIafsccj9sbnHGkMzlud2G7HEOjTbmHfvri835CrhocbZX07J2-rhdfnUbl4e18u7TevHP76ljAsveUCtVNKISQtGlWFMOq-R0qiE71RA7qiJiSejNXbAKYOoE6jEp2T9yw097u1nyR9Yvm2P2Z6HvuwsliH7Q7QhKc4SM5ACCB-o4c4w74SjILVCP7IWvyxf-lpLTP88Cvasz4767EmfPevjPyt7Ye8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Face Identification Based on K-Nearest Neighbor</title><source>DOAJ Directory of Open Access Journals</source><creator>Wirdiani, Ni Kadek Ayu ; Hridayami, Praba ; Widiari, Ni Putu Ayu ; Rismawan, Komang Diva ; Candradinata, Putu Bagus ; Jayantha, I Putu Deva</creator><creatorcontrib>Wirdiani, Ni Kadek Ayu ; Hridayami, Praba ; Widiari, Ni Putu Ayu ; Rismawan, Komang Diva ; Candradinata, Putu Bagus ; Jayantha, I Putu Deva</creatorcontrib><description>Face identification has been widely applied this time, such as security on gadgets, smart home security, and others. Face dominates as a biometric which is most increase in the next few years. Face is used for biometric identification which is considered successful among several other types of biometrics and accurate results. Face recognition utilizes facial features for security purposes. The classification method in this paper is K-nearest Neighbor (KNN). The K-Nearest Neighbor algorithm uses neighborhood classification as the predictive value of a good instance value. K-NN includes an instance-based learning group. This paper developed face identification using Principal Component Analysis (PCA) or eigenface extraction methods. The stages of face identification research using the KNN method are pre-processing in the input image. Preprocessing used in this research are contrass stretching, grayscale, and segmentation used haar cascade. This research is registered 30 people, each person had 3 images used for training and 2 images used for testing. The results obtained from several trials of k values are as follows. Experiments with a value of k=1 get the best accuracy, namely 81%, k=2 get 53% accuracy, and k=3 get 45% accuracy.</description><identifier>ISSN: 2407-7658</identifier><identifier>EISSN: 2460-0040</identifier><identifier>DOI: 10.15294/sji.v6i2.19503</identifier><language>eng</language><publisher>Jurusan Ilmu Komputer Universitas Negeri Semarang</publisher><subject>convolutional neural network, k-nearest neighbor, principal component analysis, haar cascade</subject><ispartof>Scientific Journal of Informatics, 2019-11, Vol.6 (2), p.150-159</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c152c-1234c53da877f8aaf842179225bc8a11e74c67da3b19ef3f988a603120e8f07f3</citedby><orcidid>0000-0002-9024-4206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Wirdiani, Ni Kadek Ayu</creatorcontrib><creatorcontrib>Hridayami, Praba</creatorcontrib><creatorcontrib>Widiari, Ni Putu Ayu</creatorcontrib><creatorcontrib>Rismawan, Komang Diva</creatorcontrib><creatorcontrib>Candradinata, Putu Bagus</creatorcontrib><creatorcontrib>Jayantha, I Putu Deva</creatorcontrib><title>Face Identification Based on K-Nearest Neighbor</title><title>Scientific Journal of Informatics</title><description>Face identification has been widely applied this time, such as security on gadgets, smart home security, and others. Face dominates as a biometric which is most increase in the next few years. Face is used for biometric identification which is considered successful among several other types of biometrics and accurate results. Face recognition utilizes facial features for security purposes. The classification method in this paper is K-nearest Neighbor (KNN). The K-Nearest Neighbor algorithm uses neighborhood classification as the predictive value of a good instance value. K-NN includes an instance-based learning group. This paper developed face identification using Principal Component Analysis (PCA) or eigenface extraction methods. The stages of face identification research using the KNN method are pre-processing in the input image. Preprocessing used in this research are contrass stretching, grayscale, and segmentation used haar cascade. This research is registered 30 people, each person had 3 images used for training and 2 images used for testing. The results obtained from several trials of k values are as follows. Experiments with a value of k=1 get the best accuracy, namely 81%, k=2 get 53% accuracy, and k=3 get 45% accuracy.</description><subject>convolutional neural network, k-nearest neighbor, principal component analysis, haar cascade</subject><issn>2407-7658</issn><issn>2460-0040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo9kM1KAzEYRYMoWGrXbucFpv3yN0mWWqwWS93oOnz5qym1I8kg-PZOq7i6l7s4XA4htxTmVDIjFnWf519dZnNqJPALMmGigxZAwOWpg2pVJ_U1mdWaHQihOpAgJmSxQh-bdYjHIafsccj9sbnHGkMzlud2G7HEOjTbmHfvri835CrhocbZX07J2-rhdfnUbl4e18u7TevHP76ljAsveUCtVNKISQtGlWFMOq-R0qiE71RA7qiJiSejNXbAKYOoE6jEp2T9yw097u1nyR9Yvm2P2Z6HvuwsliH7Q7QhKc4SM5ACCB-o4c4w74SjILVCP7IWvyxf-lpLTP88Cvasz4767EmfPevjPyt7Ye8</recordid><startdate>20191130</startdate><enddate>20191130</enddate><creator>Wirdiani, Ni Kadek Ayu</creator><creator>Hridayami, Praba</creator><creator>Widiari, Ni Putu Ayu</creator><creator>Rismawan, Komang Diva</creator><creator>Candradinata, Putu Bagus</creator><creator>Jayantha, I Putu Deva</creator><general>Jurusan Ilmu Komputer Universitas Negeri Semarang</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9024-4206</orcidid></search><sort><creationdate>20191130</creationdate><title>Face Identification Based on K-Nearest Neighbor</title><author>Wirdiani, Ni Kadek Ayu ; Hridayami, Praba ; Widiari, Ni Putu Ayu ; Rismawan, Komang Diva ; Candradinata, Putu Bagus ; Jayantha, I Putu Deva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c152c-1234c53da877f8aaf842179225bc8a11e74c67da3b19ef3f988a603120e8f07f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>convolutional neural network, k-nearest neighbor, principal component analysis, haar cascade</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wirdiani, Ni Kadek Ayu</creatorcontrib><creatorcontrib>Hridayami, Praba</creatorcontrib><creatorcontrib>Widiari, Ni Putu Ayu</creatorcontrib><creatorcontrib>Rismawan, Komang Diva</creatorcontrib><creatorcontrib>Candradinata, Putu Bagus</creatorcontrib><creatorcontrib>Jayantha, I Putu Deva</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific Journal of Informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wirdiani, Ni Kadek Ayu</au><au>Hridayami, Praba</au><au>Widiari, Ni Putu Ayu</au><au>Rismawan, Komang Diva</au><au>Candradinata, Putu Bagus</au><au>Jayantha, I Putu Deva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Face Identification Based on K-Nearest Neighbor</atitle><jtitle>Scientific Journal of Informatics</jtitle><date>2019-11-30</date><risdate>2019</risdate><volume>6</volume><issue>2</issue><spage>150</spage><epage>159</epage><pages>150-159</pages><issn>2407-7658</issn><eissn>2460-0040</eissn><abstract>Face identification has been widely applied this time, such as security on gadgets, smart home security, and others. Face dominates as a biometric which is most increase in the next few years. Face is used for biometric identification which is considered successful among several other types of biometrics and accurate results. Face recognition utilizes facial features for security purposes. The classification method in this paper is K-nearest Neighbor (KNN). The K-Nearest Neighbor algorithm uses neighborhood classification as the predictive value of a good instance value. K-NN includes an instance-based learning group. This paper developed face identification using Principal Component Analysis (PCA) or eigenface extraction methods. The stages of face identification research using the KNN method are pre-processing in the input image. Preprocessing used in this research are contrass stretching, grayscale, and segmentation used haar cascade. This research is registered 30 people, each person had 3 images used for training and 2 images used for testing. The results obtained from several trials of k values are as follows. Experiments with a value of k=1 get the best accuracy, namely 81%, k=2 get 53% accuracy, and k=3 get 45% accuracy.</abstract><pub>Jurusan Ilmu Komputer Universitas Negeri Semarang</pub><doi>10.15294/sji.v6i2.19503</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9024-4206</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2407-7658 |
ispartof | Scientific Journal of Informatics, 2019-11, Vol.6 (2), p.150-159 |
issn | 2407-7658 2460-0040 |
language | eng |
recordid | cdi_crossref_primary_10_15294_sji_v6i2_19503 |
source | DOAJ Directory of Open Access Journals |
subjects | convolutional neural network, k-nearest neighbor, principal component analysis, haar cascade |
title | Face Identification Based on K-Nearest Neighbor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A41%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Face%20Identification%20Based%20on%20K-Nearest%20Neighbor&rft.jtitle=Scientific%20Journal%20of%20Informatics&rft.au=Wirdiani,%20Ni%20Kadek%20Ayu&rft.date=2019-11-30&rft.volume=6&rft.issue=2&rft.spage=150&rft.epage=159&rft.pages=150-159&rft.issn=2407-7658&rft.eissn=2460-0040&rft_id=info:doi/10.15294/sji.v6i2.19503&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_df732f290fd04cd193b92cb4b10587ac%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_df732f290fd04cd193b92cb4b10587ac&rfr_iscdi=true |