Nonlinear Instability of Rayleigh-Taylor Waves Subjected to Time-Dependent Temperatures

The effect of time-dependent temperatures on surface waves is investigated. Nonlinear stability analysis is performed to describe waves propagating along the interface between two fluids in the presence of mass and heat transfer. Due to the presence of periodic forces, resonance interaction is balan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für Naturforschung. A, A journal of physical sciences A journal of physical sciences, 2008-09, Vol.63 (9), p.575-584
Hauptverfasser: El-Dib, Yusry O., Mahmoud, Yassmin D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 584
container_issue 9
container_start_page 575
container_title Zeitschrift für Naturforschung. A, A journal of physical sciences
container_volume 63
creator El-Dib, Yusry O.
Mahmoud, Yassmin D.
description The effect of time-dependent temperatures on surface waves is investigated. Nonlinear stability analysis is performed to describe waves propagating along the interface between two fluids in the presence of mass and heat transfer. Due to the presence of periodic forces, resonance interaction is balanced. The use of a multiple-scales method yields different nonlinear Schrödinger equations. Two parametric nonlinear Schrödinger equations are derived in resonance cases. One of these equations has not been treated before. Its stability criteria depending on linear perturbation are derived. A classical nonlinear Schrödinger equation is derived in the nonresonance case. Stability conditions are obtained analytically and investigated numerically. It is shown that the resonance point depends on the external frequency and that, for Ω ≈ 2ω and Ω ≈ ω, where Ω and ω are the external and disturbance frequency, the external frequency has stabilizing and destabilizing effects, respectively.
doi_str_mv 10.1515/zna-2008-0908
format Article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_zna_2008_0908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_zna_2008_0908639575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-81a60a9c96b1a24724c38194eea74643b364fc395d723bfb4d912f56004ce6383</originalsourceid><addsrcrecordid>eNptkE1LxDAYhIMouK4evecPRJPmG0-yfi0sClrZY0nbt2uXbrokqVJ_vV306GnmMDMMD0KXjF4xyeT1t3cko9QQaqk5QjNmlCSaUXuMZtTyjFBtxCk6i3FLKVdSixlaP_e-az24gJc-Jle2XZtG3Df41Y0dtJsPkk-mD3jtPiHit6HcQpWgxqnHebsDcgd78DX4hHPY7SG4NASI5-ikcV2Eiz-do_eH-3zxRFYvj8vF7YpUmRGJGOYUdbayqmQuEzoTFTfMCgCnhRK85Eo0Fbey1hkvm1LUlmWNVJSKChQ3fI7I724V-hgDNMU-tDsXxoLR4kClmKgUByrFgcqUv_nNf7kuQahhE4ZxMsW2H4Kfnv7fU9MFLfkP2_JpnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonlinear Instability of Rayleigh-Taylor Waves Subjected to Time-Dependent Temperatures</title><source>Alma/SFX Local Collection</source><creator>El-Dib, Yusry O. ; Mahmoud, Yassmin D.</creator><creatorcontrib>El-Dib, Yusry O. ; Mahmoud, Yassmin D.</creatorcontrib><description>The effect of time-dependent temperatures on surface waves is investigated. Nonlinear stability analysis is performed to describe waves propagating along the interface between two fluids in the presence of mass and heat transfer. Due to the presence of periodic forces, resonance interaction is balanced. The use of a multiple-scales method yields different nonlinear Schrödinger equations. Two parametric nonlinear Schrödinger equations are derived in resonance cases. One of these equations has not been treated before. Its stability criteria depending on linear perturbation are derived. A classical nonlinear Schrödinger equation is derived in the nonresonance case. Stability conditions are obtained analytically and investigated numerically. It is shown that the resonance point depends on the external frequency and that, for Ω ≈ 2ω and Ω ≈ ω, where Ω and ω are the external and disturbance frequency, the external frequency has stabilizing and destabilizing effects, respectively.</description><identifier>ISSN: 0932-0784</identifier><identifier>EISSN: 1865-7109</identifier><identifier>DOI: 10.1515/zna-2008-0908</identifier><language>eng</language><publisher>Verlag der Zeitschrift für Naturforschung</publisher><subject>Mass and Heat Transfer ; Nonlinear Schrödinger Equation ; Nonlinear Stability ; Periodic Heat</subject><ispartof>Zeitschrift für Naturforschung. A, A journal of physical sciences, 2008-09, Vol.63 (9), p.575-584</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>El-Dib, Yusry O.</creatorcontrib><creatorcontrib>Mahmoud, Yassmin D.</creatorcontrib><title>Nonlinear Instability of Rayleigh-Taylor Waves Subjected to Time-Dependent Temperatures</title><title>Zeitschrift für Naturforschung. A, A journal of physical sciences</title><description>The effect of time-dependent temperatures on surface waves is investigated. Nonlinear stability analysis is performed to describe waves propagating along the interface between two fluids in the presence of mass and heat transfer. Due to the presence of periodic forces, resonance interaction is balanced. The use of a multiple-scales method yields different nonlinear Schrödinger equations. Two parametric nonlinear Schrödinger equations are derived in resonance cases. One of these equations has not been treated before. Its stability criteria depending on linear perturbation are derived. A classical nonlinear Schrödinger equation is derived in the nonresonance case. Stability conditions are obtained analytically and investigated numerically. It is shown that the resonance point depends on the external frequency and that, for Ω ≈ 2ω and Ω ≈ ω, where Ω and ω are the external and disturbance frequency, the external frequency has stabilizing and destabilizing effects, respectively.</description><subject>Mass and Heat Transfer</subject><subject>Nonlinear Schrödinger Equation</subject><subject>Nonlinear Stability</subject><subject>Periodic Heat</subject><issn>0932-0784</issn><issn>1865-7109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNptkE1LxDAYhIMouK4evecPRJPmG0-yfi0sClrZY0nbt2uXbrokqVJ_vV306GnmMDMMD0KXjF4xyeT1t3cko9QQaqk5QjNmlCSaUXuMZtTyjFBtxCk6i3FLKVdSixlaP_e-az24gJc-Jle2XZtG3Df41Y0dtJsPkk-mD3jtPiHit6HcQpWgxqnHebsDcgd78DX4hHPY7SG4NASI5-ikcV2Eiz-do_eH-3zxRFYvj8vF7YpUmRGJGOYUdbayqmQuEzoTFTfMCgCnhRK85Eo0Fbey1hkvm1LUlmWNVJSKChQ3fI7I724V-hgDNMU-tDsXxoLR4kClmKgUByrFgcqUv_nNf7kuQahhE4ZxMsW2H4Kfnv7fU9MFLfkP2_JpnQ</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>El-Dib, Yusry O.</creator><creator>Mahmoud, Yassmin D.</creator><general>Verlag der Zeitschrift für Naturforschung</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080901</creationdate><title>Nonlinear Instability of Rayleigh-Taylor Waves Subjected to Time-Dependent Temperatures</title><author>El-Dib, Yusry O. ; Mahmoud, Yassmin D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-81a60a9c96b1a24724c38194eea74643b364fc395d723bfb4d912f56004ce6383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Mass and Heat Transfer</topic><topic>Nonlinear Schrödinger Equation</topic><topic>Nonlinear Stability</topic><topic>Periodic Heat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El-Dib, Yusry O.</creatorcontrib><creatorcontrib>Mahmoud, Yassmin D.</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für Naturforschung. A, A journal of physical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Dib, Yusry O.</au><au>Mahmoud, Yassmin D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Instability of Rayleigh-Taylor Waves Subjected to Time-Dependent Temperatures</atitle><jtitle>Zeitschrift für Naturforschung. A, A journal of physical sciences</jtitle><date>2008-09-01</date><risdate>2008</risdate><volume>63</volume><issue>9</issue><spage>575</spage><epage>584</epage><pages>575-584</pages><issn>0932-0784</issn><eissn>1865-7109</eissn><abstract>The effect of time-dependent temperatures on surface waves is investigated. Nonlinear stability analysis is performed to describe waves propagating along the interface between two fluids in the presence of mass and heat transfer. Due to the presence of periodic forces, resonance interaction is balanced. The use of a multiple-scales method yields different nonlinear Schrödinger equations. Two parametric nonlinear Schrödinger equations are derived in resonance cases. One of these equations has not been treated before. Its stability criteria depending on linear perturbation are derived. A classical nonlinear Schrödinger equation is derived in the nonresonance case. Stability conditions are obtained analytically and investigated numerically. It is shown that the resonance point depends on the external frequency and that, for Ω ≈ 2ω and Ω ≈ ω, where Ω and ω are the external and disturbance frequency, the external frequency has stabilizing and destabilizing effects, respectively.</abstract><pub>Verlag der Zeitschrift für Naturforschung</pub><doi>10.1515/zna-2008-0908</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0932-0784
ispartof Zeitschrift für Naturforschung. A, A journal of physical sciences, 2008-09, Vol.63 (9), p.575-584
issn 0932-0784
1865-7109
language eng
recordid cdi_crossref_primary_10_1515_zna_2008_0908
source Alma/SFX Local Collection
subjects Mass and Heat Transfer
Nonlinear Schrödinger Equation
Nonlinear Stability
Periodic Heat
title Nonlinear Instability of Rayleigh-Taylor Waves Subjected to Time-Dependent Temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A25%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Instability%20of%20Rayleigh-Taylor%20Waves%20Subjected%20to%20Time-Dependent%20Temperatures&rft.jtitle=Zeitschrift%20f%C3%BCr%20Naturforschung.%20A,%20A%20journal%20of%20physical%20sciences&rft.au=El-Dib,%20Yusry%20O.&rft.date=2008-09-01&rft.volume=63&rft.issue=9&rft.spage=575&rft.epage=584&rft.pages=575-584&rft.issn=0932-0784&rft.eissn=1865-7109&rft_id=info:doi/10.1515/zna-2008-0908&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_zna_2008_0908639575%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true