Some pseudodifferential operators on a segment and the theory of thin wire antennae

The problem of thin-wire antenna radiation under pulse excitation reduces to the solution of a hypersingular integral equation of the first kind on a segment, with the Dirac d-function in its right-hand side. We propose and justify the numerical method of the type of the discrete vortex pair method....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of numerical analysis and mathematical modelling 2001-01, Vol.16 (6), p.453-466
Hauptverfasser: Anfinogenov, A. Yu, Lifanov, I. K., Vainikko, G. M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 466
container_issue 6
container_start_page 453
container_title Russian journal of numerical analysis and mathematical modelling
container_volume 16
creator Anfinogenov, A. Yu
Lifanov, I. K.
Vainikko, G. M.
description The problem of thin-wire antenna radiation under pulse excitation reduces to the solution of a hypersingular integral equation of the first kind on a segment, with the Dirac d-function in its right-hand side. We propose and justify the numerical method of the type of the discrete vortex pair method. We compare the numerical solution for a half-wave rectilinear cylindrical dipole with the well-known solution resulting from other considerations. We study problems of the unique existence of the solution to the corresponding characteristic hypersingular integral equation. For this purpose the equation is regarded as a pseudodifferential operator in some weight Sobolev spaces.
doi_str_mv 10.1515/rnam-2001-0602
format Article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_rnam_2001_0602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_rnam_2001_0602166453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-392f4f2d1ba92973441445fa2fcbd497ffbc7a2933d529059f679cf0dd8909fa3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKtXz_kHtuZ7G_AixS8oeKiel3QzU7fsJiXZUvrfm0WvHoZ58OYNjx8h95wtuOb6IQU3VIIxXjHDxAWZcW1sJe1yeUlmzIq6MsrU1-Qm5z1jzHBhZmSziQPQQ4ajj75DhARh7FxP4wGSG2PKNAbqaIbdUBzqgqfjN0wT05lGLKoL9NQlKN4IITi4JVfo-gx3f3tOvl6eP1dv1frj9X31tK5aofRYmglUKDzfOitsLZXiSml0AtutV7ZG3La1E1ZKr4Vl2qKpbYvM-6VlFp2ck8Xv3zbFnBNgc0jd4NK54ayZkDQTkmZC0kxISuDxN3By_QjJwy4dz0U0-3gsp33-J8iNUVrKH8mHafI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some pseudodifferential operators on a segment and the theory of thin wire antennae</title><source>De Gruyter journals</source><creator>Anfinogenov, A. Yu ; Lifanov, I. K. ; Vainikko, G. M.</creator><creatorcontrib>Anfinogenov, A. Yu ; Lifanov, I. K. ; Vainikko, G. M.</creatorcontrib><description>The problem of thin-wire antenna radiation under pulse excitation reduces to the solution of a hypersingular integral equation of the first kind on a segment, with the Dirac d-function in its right-hand side. We propose and justify the numerical method of the type of the discrete vortex pair method. We compare the numerical solution for a half-wave rectilinear cylindrical dipole with the well-known solution resulting from other considerations. We study problems of the unique existence of the solution to the corresponding characteristic hypersingular integral equation. For this purpose the equation is regarded as a pseudodifferential operator in some weight Sobolev spaces.</description><identifier>ISSN: 0927-6467</identifier><identifier>EISSN: 1569-3988</identifier><identifier>DOI: 10.1515/rnam-2001-0602</identifier><language>eng</language><publisher>De Gruyter</publisher><ispartof>Russian journal of numerical analysis and mathematical modelling, 2001-01, Vol.16 (6), p.453-466</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/rnam-2001-0602/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/rnam-2001-0602/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,66497,68281</link.rule.ids></links><search><creatorcontrib>Anfinogenov, A. Yu</creatorcontrib><creatorcontrib>Lifanov, I. K.</creatorcontrib><creatorcontrib>Vainikko, G. M.</creatorcontrib><title>Some pseudodifferential operators on a segment and the theory of thin wire antennae</title><title>Russian journal of numerical analysis and mathematical modelling</title><description>The problem of thin-wire antenna radiation under pulse excitation reduces to the solution of a hypersingular integral equation of the first kind on a segment, with the Dirac d-function in its right-hand side. We propose and justify the numerical method of the type of the discrete vortex pair method. We compare the numerical solution for a half-wave rectilinear cylindrical dipole with the well-known solution resulting from other considerations. We study problems of the unique existence of the solution to the corresponding characteristic hypersingular integral equation. For this purpose the equation is regarded as a pseudodifferential operator in some weight Sobolev spaces.</description><issn>0927-6467</issn><issn>1569-3988</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKtXz_kHtuZ7G_AixS8oeKiel3QzU7fsJiXZUvrfm0WvHoZ58OYNjx8h95wtuOb6IQU3VIIxXjHDxAWZcW1sJe1yeUlmzIq6MsrU1-Qm5z1jzHBhZmSziQPQQ4ajj75DhARh7FxP4wGSG2PKNAbqaIbdUBzqgqfjN0wT05lGLKoL9NQlKN4IITi4JVfo-gx3f3tOvl6eP1dv1frj9X31tK5aofRYmglUKDzfOitsLZXiSml0AtutV7ZG3La1E1ZKr4Vl2qKpbYvM-6VlFp2ck8Xv3zbFnBNgc0jd4NK54ayZkDQTkmZC0kxISuDxN3By_QjJwy4dz0U0-3gsp33-J8iNUVrKH8mHafI</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>Anfinogenov, A. Yu</creator><creator>Lifanov, I. K.</creator><creator>Vainikko, G. M.</creator><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010101</creationdate><title>Some pseudodifferential operators on a segment and the theory of thin wire antennae</title><author>Anfinogenov, A. Yu ; Lifanov, I. K. ; Vainikko, G. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-392f4f2d1ba92973441445fa2fcbd497ffbc7a2933d529059f679cf0dd8909fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anfinogenov, A. Yu</creatorcontrib><creatorcontrib>Lifanov, I. K.</creatorcontrib><creatorcontrib>Vainikko, G. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of numerical analysis and mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anfinogenov, A. Yu</au><au>Lifanov, I. K.</au><au>Vainikko, G. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some pseudodifferential operators on a segment and the theory of thin wire antennae</atitle><jtitle>Russian journal of numerical analysis and mathematical modelling</jtitle><date>2001-01-01</date><risdate>2001</risdate><volume>16</volume><issue>6</issue><spage>453</spage><epage>466</epage><pages>453-466</pages><issn>0927-6467</issn><eissn>1569-3988</eissn><abstract>The problem of thin-wire antenna radiation under pulse excitation reduces to the solution of a hypersingular integral equation of the first kind on a segment, with the Dirac d-function in its right-hand side. We propose and justify the numerical method of the type of the discrete vortex pair method. We compare the numerical solution for a half-wave rectilinear cylindrical dipole with the well-known solution resulting from other considerations. We study problems of the unique existence of the solution to the corresponding characteristic hypersingular integral equation. For this purpose the equation is regarded as a pseudodifferential operator in some weight Sobolev spaces.</abstract><pub>De Gruyter</pub><doi>10.1515/rnam-2001-0602</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-6467
ispartof Russian journal of numerical analysis and mathematical modelling, 2001-01, Vol.16 (6), p.453-466
issn 0927-6467
1569-3988
language eng
recordid cdi_crossref_primary_10_1515_rnam_2001_0602
source De Gruyter journals
title Some pseudodifferential operators on a segment and the theory of thin wire antennae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A22%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20pseudodifferential%20operators%20on%20a%20segment%20and%20the%20theory%20of%20thin%20wire%20antennae&rft.jtitle=Russian%20journal%20of%20numerical%20analysis%20and%20mathematical%20modelling&rft.au=Anfinogenov,%20A.%20Yu&rft.date=2001-01-01&rft.volume=16&rft.issue=6&rft.spage=453&rft.epage=466&rft.pages=453-466&rft.issn=0927-6467&rft.eissn=1569-3988&rft_id=info:doi/10.1515/rnam-2001-0602&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_rnam_2001_0602166453%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true