Artificial Intelligence in Basic and Clinical Neuroscience: Opportunities and Ethical Challenges

The analysis of large amounts of personal data with artificial neural networks for deep learning is the driving technology behind new artificial intelligence (AI) systems for all areas in science and technology. These AI methods have evolved from applications in computer vision, the automated analys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroforum 2019-11, Vol.25 (4), p.241-250
1. Verfasser: Kellmeyer, Philipp
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 250
container_issue 4
container_start_page 241
container_title Neuroforum
container_volume 25
creator Kellmeyer, Philipp
description The analysis of large amounts of personal data with artificial neural networks for deep learning is the driving technology behind new artificial intelligence (AI) systems for all areas in science and technology. These AI methods have evolved from applications in computer vision, the automated analysis of images, and now include frameworks and methods for analyzing multimodal datasets that combine data from many different source, including biomedical devices, smartphones and common user behavior in cyberspace. For neuroscience, these widening streams of personal data and machine learning methods provide many opportunities for basic data-driven research as well as for developing new tools for diagnostic, predictive and therapeutic applications for disorders of the nervous system. The increasing automation and autonomy of AI systems, however, also creates substantial ethical challenges for basic research and medical applications. Here, scientific and medical opportunities as well ethical challenges are summarized and discussed.
doi_str_mv 10.1515/nf-2019-0018
format Article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_nf_2019_0018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_nf_2019_0018254241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2011-fb6e245588ad8abdb37c437f83da80a74dd612cb24d062b01126da96aa20c0193</originalsourceid><addsrcrecordid>eNptkE1OwzAQRi0EElXpjgPkABhsx06c7kpUoFJFNyCxM45_WlfGrexEiNvjtCyZzczizejNB8AtRveYYfYQLCQINxAhzC_ABPOKQ86qj0swQQ2tIeI1uwazlPYoF2WsoeUEfC5i76xTTvpiFXrjvduaoEzhQvEok1OFDLpovQtOZeTVDPGQlBuRebE5Hg-xH4LrnUkncNnvTly7k96bsDXpBlxZ6ZOZ_fUpeH9avrUvcL15XrWLNVTZGkPbVYZkKc6l5rLTXVkrWtaWl1pyJGuqdYWJ6gjVqCJdXiGVlk0lJUEqv11Owd35rsqCKRorjtF9yfgjMBJjQCJYMQYkxoAyPj_j39L3JmqzjcNPHsT-MMSQRf9dI4wSistfqQ9sUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Artificial Intelligence in Basic and Clinical Neuroscience: Opportunities and Ethical Challenges</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kellmeyer, Philipp</creator><creatorcontrib>Kellmeyer, Philipp</creatorcontrib><description>The analysis of large amounts of personal data with artificial neural networks for deep learning is the driving technology behind new artificial intelligence (AI) systems for all areas in science and technology. These AI methods have evolved from applications in computer vision, the automated analysis of images, and now include frameworks and methods for analyzing multimodal datasets that combine data from many different source, including biomedical devices, smartphones and common user behavior in cyberspace. For neuroscience, these widening streams of personal data and machine learning methods provide many opportunities for basic data-driven research as well as for developing new tools for diagnostic, predictive and therapeutic applications for disorders of the nervous system. The increasing automation and autonomy of AI systems, however, also creates substantial ethical challenges for basic research and medical applications. Here, scientific and medical opportunities as well ethical challenges are summarized and discussed.</description><identifier>ISSN: 0947-0875</identifier><identifier>EISSN: 1868-856X</identifier><identifier>EISSN: 2363-7013</identifier><identifier>DOI: 10.1515/nf-2019-0018</identifier><language>eng</language><publisher>De Gruyter</publisher><subject>artificial intelligence ; big data ; deep learning ; Künstliche Intelligenz ; machine learning ; maschinelles Lernen ; neuroethics ; Neuroethik ; Tiefes Lernen</subject><ispartof>Neuroforum, 2019-11, Vol.25 (4), p.241-250</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2011-fb6e245588ad8abdb37c437f83da80a74dd612cb24d062b01126da96aa20c0193</citedby><orcidid>0000-0001-5538-373X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kellmeyer, Philipp</creatorcontrib><title>Artificial Intelligence in Basic and Clinical Neuroscience: Opportunities and Ethical Challenges</title><title>Neuroforum</title><description>The analysis of large amounts of personal data with artificial neural networks for deep learning is the driving technology behind new artificial intelligence (AI) systems for all areas in science and technology. These AI methods have evolved from applications in computer vision, the automated analysis of images, and now include frameworks and methods for analyzing multimodal datasets that combine data from many different source, including biomedical devices, smartphones and common user behavior in cyberspace. For neuroscience, these widening streams of personal data and machine learning methods provide many opportunities for basic data-driven research as well as for developing new tools for diagnostic, predictive and therapeutic applications for disorders of the nervous system. The increasing automation and autonomy of AI systems, however, also creates substantial ethical challenges for basic research and medical applications. Here, scientific and medical opportunities as well ethical challenges are summarized and discussed.</description><subject>artificial intelligence</subject><subject>big data</subject><subject>deep learning</subject><subject>Künstliche Intelligenz</subject><subject>machine learning</subject><subject>maschinelles Lernen</subject><subject>neuroethics</subject><subject>Neuroethik</subject><subject>Tiefes Lernen</subject><issn>0947-0875</issn><issn>1868-856X</issn><issn>2363-7013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkE1OwzAQRi0EElXpjgPkABhsx06c7kpUoFJFNyCxM45_WlfGrexEiNvjtCyZzczizejNB8AtRveYYfYQLCQINxAhzC_ABPOKQ86qj0swQQ2tIeI1uwazlPYoF2WsoeUEfC5i76xTTvpiFXrjvduaoEzhQvEok1OFDLpovQtOZeTVDPGQlBuRebE5Hg-xH4LrnUkncNnvTly7k96bsDXpBlxZ6ZOZ_fUpeH9avrUvcL15XrWLNVTZGkPbVYZkKc6l5rLTXVkrWtaWl1pyJGuqdYWJ6gjVqCJdXiGVlk0lJUEqv11Owd35rsqCKRorjtF9yfgjMBJjQCJYMQYkxoAyPj_j39L3JmqzjcNPHsT-MMSQRf9dI4wSistfqQ9sUA</recordid><startdate>20191126</startdate><enddate>20191126</enddate><creator>Kellmeyer, Philipp</creator><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5538-373X</orcidid></search><sort><creationdate>20191126</creationdate><title>Artificial Intelligence in Basic and Clinical Neuroscience: Opportunities and Ethical Challenges</title><author>Kellmeyer, Philipp</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2011-fb6e245588ad8abdb37c437f83da80a74dd612cb24d062b01126da96aa20c0193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>artificial intelligence</topic><topic>big data</topic><topic>deep learning</topic><topic>Künstliche Intelligenz</topic><topic>machine learning</topic><topic>maschinelles Lernen</topic><topic>neuroethics</topic><topic>Neuroethik</topic><topic>Tiefes Lernen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kellmeyer, Philipp</creatorcontrib><collection>CrossRef</collection><jtitle>Neuroforum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kellmeyer, Philipp</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence in Basic and Clinical Neuroscience: Opportunities and Ethical Challenges</atitle><jtitle>Neuroforum</jtitle><date>2019-11-26</date><risdate>2019</risdate><volume>25</volume><issue>4</issue><spage>241</spage><epage>250</epage><pages>241-250</pages><issn>0947-0875</issn><eissn>1868-856X</eissn><eissn>2363-7013</eissn><abstract>The analysis of large amounts of personal data with artificial neural networks for deep learning is the driving technology behind new artificial intelligence (AI) systems for all areas in science and technology. These AI methods have evolved from applications in computer vision, the automated analysis of images, and now include frameworks and methods for analyzing multimodal datasets that combine data from many different source, including biomedical devices, smartphones and common user behavior in cyberspace. For neuroscience, these widening streams of personal data and machine learning methods provide many opportunities for basic data-driven research as well as for developing new tools for diagnostic, predictive and therapeutic applications for disorders of the nervous system. The increasing automation and autonomy of AI systems, however, also creates substantial ethical challenges for basic research and medical applications. Here, scientific and medical opportunities as well ethical challenges are summarized and discussed.</abstract><pub>De Gruyter</pub><doi>10.1515/nf-2019-0018</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5538-373X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-0875
ispartof Neuroforum, 2019-11, Vol.25 (4), p.241-250
issn 0947-0875
1868-856X
2363-7013
language eng
recordid cdi_crossref_primary_10_1515_nf_2019_0018
source EZB-FREE-00999 freely available EZB journals
subjects artificial intelligence
big data
deep learning
Künstliche Intelligenz
machine learning
maschinelles Lernen
neuroethics
Neuroethik
Tiefes Lernen
title Artificial Intelligence in Basic and Clinical Neuroscience: Opportunities and Ethical Challenges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20in%20Basic%20and%20Clinical%20Neuroscience:%20Opportunities%20and%20Ethical%20Challenges&rft.jtitle=Neuroforum&rft.au=Kellmeyer,%20Philipp&rft.date=2019-11-26&rft.volume=25&rft.issue=4&rft.spage=241&rft.epage=250&rft.pages=241-250&rft.issn=0947-0875&rft.eissn=1868-856X&rft_id=info:doi/10.1515/nf-2019-0018&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_nf_2019_0018254241%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true