Advanced encryption method realized by secret shared phase encoding scheme using a multi-wavelength metasurface
Multi-channel information encryption technology has been implemented by optical metasurfaces owing to their superior ability to control the phase, amplitude, wavelength and polarization of incident light. However, current metasurface-based multi-channel encryption technologies suffer from informatio...
Gespeichert in:
Veröffentlicht in: | Nanophotonics (Berlin, Germany) Germany), 2020-09, Vol.9 (11), p.3687-3696 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3696 |
---|---|
container_issue | 11 |
container_start_page | 3687 |
container_title | Nanophotonics (Berlin, Germany) |
container_volume | 9 |
creator | Li, Zhenfei Premaratne, Malin Zhu, Weiren |
description | Multi-channel information encryption technology has been implemented by optical metasurfaces owing to their superior ability to control the phase, amplitude, wavelength and polarization of incident light. However, current metasurface-based multi-channel encryption technologies suffer from information leakage in non-full channel decoding processes. To better increase the security of the encrypted information, we develop a secret shared phase encoding scheme by combining a visual secret sharing scheme with a metasurface-based phase-encoding technique. Our method achieves its high-concealment through mapping the target image into a set of unrecognizable phase-only keys that are subsequently encoded by a multi-wavelength metasurface. In the decryption process, the secret information can be reconstructed only by decoding and stacking all the wavelength channels of the metasurface. At the same time, chaotic images can be extracted from the other channels without revealing any original information. The simulated results and the theoretical analysis show the strong robustness and high security of our encryption setup, which is sure to find applications in emerging optical encryption schemes. |
doi_str_mv | 10.1515/nanoph-2020-0298 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_crossref_primary_10_1515_nanoph_2020_0298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_da4d95bde3514a66bdd1c2781ee856bc</doaj_id><sourcerecordid>2436117659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-d9e786e6b92905b087c12db10cff6547e74cb2f18ba5a2af1d0f63ffd4acd1283</originalsourceid><addsrcrecordid>eNp1kc1r3DAQxU1poSHNvUdDzm41siVbpxBCPwKBXtqzGEmjtRev5Upywvavr12H9BRdNPM07zeCVxQfgX0CAeLzhFOY-4ozzirGVfemuOCgeNVJaN6-1Ey-L65SOrL1KFWDkhdFuHWPOFlyJU02nuc8hKk8Ue6DKyPhOPxZn8y5TGQj5TL1GFdh7jHR5ghumA5lsj2dqFzS1mB5WsY8VE_4SCNNh9xvPExL9GjpQ_HO45jo6vm-LH59_fLz7nv18OPb_d3tQ2WbWuTKKWo7SdIorpgwrGstcGeAWe-laFpqG2u4h86gQI4eHPOy9t41aB3wrr4s7neuC3jUcxxOGM864KD_CSEeNMY82JG0w8YpYRzVAhqU0jgHlrcdEHVCGruyrnfWHMPvhVLWx7DEaf2-5k0tAVop1DrF9ikbQ0qR_MtWYHpLSe8p6S0lvaW0Wm52yxOOmaKjQ1zOa_Gf_5pVAdSya-u_daeeDQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436117659</pqid></control><display><type>article</type><title>Advanced encryption method realized by secret shared phase encoding scheme using a multi-wavelength metasurface</title><source>De Gruyter Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Zhenfei ; Premaratne, Malin ; Zhu, Weiren</creator><creatorcontrib>Li, Zhenfei ; Premaratne, Malin ; Zhu, Weiren</creatorcontrib><description>Multi-channel information encryption technology has been implemented by optical metasurfaces owing to their superior ability to control the phase, amplitude, wavelength and polarization of incident light. However, current metasurface-based multi-channel encryption technologies suffer from information leakage in non-full channel decoding processes. To better increase the security of the encrypted information, we develop a secret shared phase encoding scheme by combining a visual secret sharing scheme with a metasurface-based phase-encoding technique. Our method achieves its high-concealment through mapping the target image into a set of unrecognizable phase-only keys that are subsequently encoded by a multi-wavelength metasurface. In the decryption process, the secret information can be reconstructed only by decoding and stacking all the wavelength channels of the metasurface. At the same time, chaotic images can be extracted from the other channels without revealing any original information. The simulated results and the theoretical analysis show the strong robustness and high security of our encryption setup, which is sure to find applications in emerging optical encryption schemes.</description><identifier>ISSN: 2192-8606</identifier><identifier>EISSN: 2192-8614</identifier><identifier>DOI: 10.1515/nanoph-2020-0298</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>Channels ; Data encryption ; Encryption ; Incident light ; information encryption ; Mapping ; metasurface ; Metasurfaces ; multi-wavelength ; phase encoding ; secret sharing ; Stability ; Target recognition</subject><ispartof>Nanophotonics (Berlin, Germany), 2020-09, Vol.9 (11), p.3687-3696</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-d9e786e6b92905b087c12db10cff6547e74cb2f18ba5a2af1d0f63ffd4acd1283</citedby><cites>FETCH-LOGICAL-c435t-d9e786e6b92905b087c12db10cff6547e74cb2f18ba5a2af1d0f63ffd4acd1283</cites><orcidid>0000-0002-6568-738X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/nanoph-2020-0298/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/nanoph-2020-0298/html$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27905,27906,66907,68691</link.rule.ids></links><search><creatorcontrib>Li, Zhenfei</creatorcontrib><creatorcontrib>Premaratne, Malin</creatorcontrib><creatorcontrib>Zhu, Weiren</creatorcontrib><title>Advanced encryption method realized by secret shared phase encoding scheme using a multi-wavelength metasurface</title><title>Nanophotonics (Berlin, Germany)</title><description>Multi-channel information encryption technology has been implemented by optical metasurfaces owing to their superior ability to control the phase, amplitude, wavelength and polarization of incident light. However, current metasurface-based multi-channel encryption technologies suffer from information leakage in non-full channel decoding processes. To better increase the security of the encrypted information, we develop a secret shared phase encoding scheme by combining a visual secret sharing scheme with a metasurface-based phase-encoding technique. Our method achieves its high-concealment through mapping the target image into a set of unrecognizable phase-only keys that are subsequently encoded by a multi-wavelength metasurface. In the decryption process, the secret information can be reconstructed only by decoding and stacking all the wavelength channels of the metasurface. At the same time, chaotic images can be extracted from the other channels without revealing any original information. The simulated results and the theoretical analysis show the strong robustness and high security of our encryption setup, which is sure to find applications in emerging optical encryption schemes.</description><subject>Channels</subject><subject>Data encryption</subject><subject>Encryption</subject><subject>Incident light</subject><subject>information encryption</subject><subject>Mapping</subject><subject>metasurface</subject><subject>Metasurfaces</subject><subject>multi-wavelength</subject><subject>phase encoding</subject><subject>secret sharing</subject><subject>Stability</subject><subject>Target recognition</subject><issn>2192-8606</issn><issn>2192-8614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc1r3DAQxU1poSHNvUdDzm41siVbpxBCPwKBXtqzGEmjtRev5Upywvavr12H9BRdNPM07zeCVxQfgX0CAeLzhFOY-4ozzirGVfemuOCgeNVJaN6-1Ey-L65SOrL1KFWDkhdFuHWPOFlyJU02nuc8hKk8Ue6DKyPhOPxZn8y5TGQj5TL1GFdh7jHR5ghumA5lsj2dqFzS1mB5WsY8VE_4SCNNh9xvPExL9GjpQ_HO45jo6vm-LH59_fLz7nv18OPb_d3tQ2WbWuTKKWo7SdIorpgwrGstcGeAWe-laFpqG2u4h86gQI4eHPOy9t41aB3wrr4s7neuC3jUcxxOGM864KD_CSEeNMY82JG0w8YpYRzVAhqU0jgHlrcdEHVCGruyrnfWHMPvhVLWx7DEaf2-5k0tAVop1DrF9ikbQ0qR_MtWYHpLSe8p6S0lvaW0Wm52yxOOmaKjQ1zOa_Gf_5pVAdSya-u_daeeDQ</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Li, Zhenfei</creator><creator>Premaratne, Malin</creator><creator>Zhu, Weiren</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6568-738X</orcidid></search><sort><creationdate>20200901</creationdate><title>Advanced encryption method realized by secret shared phase encoding scheme using a multi-wavelength metasurface</title><author>Li, Zhenfei ; Premaratne, Malin ; Zhu, Weiren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-d9e786e6b92905b087c12db10cff6547e74cb2f18ba5a2af1d0f63ffd4acd1283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Channels</topic><topic>Data encryption</topic><topic>Encryption</topic><topic>Incident light</topic><topic>information encryption</topic><topic>Mapping</topic><topic>metasurface</topic><topic>Metasurfaces</topic><topic>multi-wavelength</topic><topic>phase encoding</topic><topic>secret sharing</topic><topic>Stability</topic><topic>Target recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhenfei</creatorcontrib><creatorcontrib>Premaratne, Malin</creatorcontrib><creatorcontrib>Zhu, Weiren</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanophotonics (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhenfei</au><au>Premaratne, Malin</au><au>Zhu, Weiren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced encryption method realized by secret shared phase encoding scheme using a multi-wavelength metasurface</atitle><jtitle>Nanophotonics (Berlin, Germany)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>9</volume><issue>11</issue><spage>3687</spage><epage>3696</epage><pages>3687-3696</pages><issn>2192-8606</issn><eissn>2192-8614</eissn><abstract>Multi-channel information encryption technology has been implemented by optical metasurfaces owing to their superior ability to control the phase, amplitude, wavelength and polarization of incident light. However, current metasurface-based multi-channel encryption technologies suffer from information leakage in non-full channel decoding processes. To better increase the security of the encrypted information, we develop a secret shared phase encoding scheme by combining a visual secret sharing scheme with a metasurface-based phase-encoding technique. Our method achieves its high-concealment through mapping the target image into a set of unrecognizable phase-only keys that are subsequently encoded by a multi-wavelength metasurface. In the decryption process, the secret information can be reconstructed only by decoding and stacking all the wavelength channels of the metasurface. At the same time, chaotic images can be extracted from the other channels without revealing any original information. The simulated results and the theoretical analysis show the strong robustness and high security of our encryption setup, which is sure to find applications in emerging optical encryption schemes.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/nanoph-2020-0298</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6568-738X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-8606 |
ispartof | Nanophotonics (Berlin, Germany), 2020-09, Vol.9 (11), p.3687-3696 |
issn | 2192-8606 2192-8614 |
language | eng |
recordid | cdi_crossref_primary_10_1515_nanoph_2020_0298 |
source | De Gruyter Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Channels Data encryption Encryption Incident light information encryption Mapping metasurface Metasurfaces multi-wavelength phase encoding secret sharing Stability Target recognition |
title | Advanced encryption method realized by secret shared phase encoding scheme using a multi-wavelength metasurface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A38%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20encryption%20method%20realized%20by%20secret%20shared%20phase%20encoding%20scheme%20using%20a%20multi-wavelength%20metasurface&rft.jtitle=Nanophotonics%20(Berlin,%20Germany)&rft.au=Li,%20Zhenfei&rft.date=2020-09-01&rft.volume=9&rft.issue=11&rft.spage=3687&rft.epage=3696&rft.pages=3687-3696&rft.issn=2192-8606&rft.eissn=2192-8614&rft_id=info:doi/10.1515/nanoph-2020-0298&rft_dat=%3Cproquest_doaj_%3E2436117659%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436117659&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_da4d95bde3514a66bdd1c2781ee856bc&rfr_iscdi=true |