Use of extrapolation in regularization methods

Extrapolation is a well-known tool for increasing the accuracy of approximation methods. We consider extrapolation of Tikhonov and Lavrentiev methods and iterated variants of these methods for solving linear ill-posed problems in Hilbert space. For extrapolated approximation we take the linear combi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Inverse and Ill-posed Problems 2007-06, Vol.15 (3), p.277-294
Hauptverfasser: Hämarik, U., Palm, R., Raus, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 294
container_issue 3
container_start_page 277
container_title Journal of Inverse and Ill-posed Problems
container_volume 15
creator Hämarik, U.
Palm, R.
Raus, T.
description Extrapolation is a well-known tool for increasing the accuracy of approximation methods. We consider extrapolation of Tikhonov and Lavrentiev methods and iterated variants of these methods for solving linear ill-posed problems in Hilbert space. For extrapolated approximation we take the linear combination of n ≥ 2 approximations of the original method with different parameters and with proper coefficients, guaranteeing for extrapolated method higher qualification than in original method. Extrapolated approximation can be used for approximation to solution of the equation or for construction of a posteriori rules for choice of the regularization parameter in original method. As shown, extrapolating n Tikhonov or Lavrentiev approximations gives the same approximation as one gets in nonstationary implicit iterative method after n iterations with the same parameters. If the solution is smooth and δ is noise level of data, a proper choice of n = n(δ) guarantees for extrapolated Tikhonov approximation accuracy versus accuracy of Tikhonov approximation. Note that in a posteriori parameter choice in Tikhonov method often several approximations with different parameters are computed and then computation of their linear combination is an easy task.
doi_str_mv 10.1515/jiip.2007.015
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_jiip_2007_015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_QT4_9SZHN0B4_5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c190t-8d92e5f1a71a78cf68ce0db9fe5d048ab9e906d04c133a17968aa688a577860f3</originalsourceid><addsrcrecordid>eNpFj01Lw0AYhBdRMFaP3vMHEt93N_t11KJWKIrYXrws22RXt6ZN2Y1Q_fUmVBQGZhiGgYeQS4QSOfKrdQi7kgLIEpAfkQy50AXTnB2TDDRVBVDUp-QspTUASk5pRsplcnnnc7fvo911re1Dt83DNo_u7bO1MXwfmo3r37smnZMTb9vkLn59QpZ3t4vprJg_3T9Mr-dFjRr6QjWaOu7RykGq9kLVDpqV9o43UCm70k6DGGKNjFmUWihrhVKWS6kEeDYhxeG3jl1K0Xmzi2Fj45dBMCOsGWHNCGsG2P99SL3b_41t_DBCMsnN86Iy-uV19gg3leHsByPIVzI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Use of extrapolation in regularization methods</title><source>De Gruyter journals</source><creator>Hämarik, U. ; Palm, R. ; Raus, T.</creator><creatorcontrib>Hämarik, U. ; Palm, R. ; Raus, T.</creatorcontrib><description>Extrapolation is a well-known tool for increasing the accuracy of approximation methods. We consider extrapolation of Tikhonov and Lavrentiev methods and iterated variants of these methods for solving linear ill-posed problems in Hilbert space. For extrapolated approximation we take the linear combination of n ≥ 2 approximations of the original method with different parameters and with proper coefficients, guaranteeing for extrapolated method higher qualification than in original method. Extrapolated approximation can be used for approximation to solution of the equation or for construction of a posteriori rules for choice of the regularization parameter in original method. As shown, extrapolating n Tikhonov or Lavrentiev approximations gives the same approximation as one gets in nonstationary implicit iterative method after n iterations with the same parameters. If the solution is smooth and δ is noise level of data, a proper choice of n = n(δ) guarantees for extrapolated Tikhonov approximation accuracy versus accuracy of Tikhonov approximation. Note that in a posteriori parameter choice in Tikhonov method often several approximations with different parameters are computed and then computation of their linear combination is an easy task.</description><identifier>ISSN: 0928-0219</identifier><identifier>EISSN: 1569-3953</identifier><identifier>EISSN: 1569-3945</identifier><identifier>DOI: 10.1515/jiip.2007.015</identifier><language>eng</language><publisher>Genthiner Strasse 13 10875 Berlin Germany: Walter de Gruyter</publisher><subject>accuracy ; extrapolation ; Ill-posed problem ; iterated Lavrentiev method ; iterated Tikhonov method ; Lepskii principle ; monotone error rule ; qualification</subject><ispartof>Journal of Inverse and Ill-posed Problems, 2007-06, Vol.15 (3), p.277-294</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c190t-8d92e5f1a71a78cf68ce0db9fe5d048ab9e906d04c133a17968aa688a577860f3</citedby><cites>FETCH-LOGICAL-c190t-8d92e5f1a71a78cf68ce0db9fe5d048ab9e906d04c133a17968aa688a577860f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hämarik, U.</creatorcontrib><creatorcontrib>Palm, R.</creatorcontrib><creatorcontrib>Raus, T.</creatorcontrib><title>Use of extrapolation in regularization methods</title><title>Journal of Inverse and Ill-posed Problems</title><addtitle>Journal of Inverse and Ill-posed Problems</addtitle><description>Extrapolation is a well-known tool for increasing the accuracy of approximation methods. We consider extrapolation of Tikhonov and Lavrentiev methods and iterated variants of these methods for solving linear ill-posed problems in Hilbert space. For extrapolated approximation we take the linear combination of n ≥ 2 approximations of the original method with different parameters and with proper coefficients, guaranteeing for extrapolated method higher qualification than in original method. Extrapolated approximation can be used for approximation to solution of the equation or for construction of a posteriori rules for choice of the regularization parameter in original method. As shown, extrapolating n Tikhonov or Lavrentiev approximations gives the same approximation as one gets in nonstationary implicit iterative method after n iterations with the same parameters. If the solution is smooth and δ is noise level of data, a proper choice of n = n(δ) guarantees for extrapolated Tikhonov approximation accuracy versus accuracy of Tikhonov approximation. Note that in a posteriori parameter choice in Tikhonov method often several approximations with different parameters are computed and then computation of their linear combination is an easy task.</description><subject>accuracy</subject><subject>extrapolation</subject><subject>Ill-posed problem</subject><subject>iterated Lavrentiev method</subject><subject>iterated Tikhonov method</subject><subject>Lepskii principle</subject><subject>monotone error rule</subject><subject>qualification</subject><issn>0928-0219</issn><issn>1569-3953</issn><issn>1569-3945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpFj01Lw0AYhBdRMFaP3vMHEt93N_t11KJWKIrYXrws22RXt6ZN2Y1Q_fUmVBQGZhiGgYeQS4QSOfKrdQi7kgLIEpAfkQy50AXTnB2TDDRVBVDUp-QspTUASk5pRsplcnnnc7fvo911re1Dt83DNo_u7bO1MXwfmo3r37smnZMTb9vkLn59QpZ3t4vprJg_3T9Mr-dFjRr6QjWaOu7RykGq9kLVDpqV9o43UCm70k6DGGKNjFmUWihrhVKWS6kEeDYhxeG3jl1K0Xmzi2Fj45dBMCOsGWHNCGsG2P99SL3b_41t_DBCMsnN86Iy-uV19gg3leHsByPIVzI</recordid><startdate>20070619</startdate><enddate>20070619</enddate><creator>Hämarik, U.</creator><creator>Palm, R.</creator><creator>Raus, T.</creator><general>Walter de Gruyter</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070619</creationdate><title>Use of extrapolation in regularization methods</title><author>Hämarik, U. ; Palm, R. ; Raus, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c190t-8d92e5f1a71a78cf68ce0db9fe5d048ab9e906d04c133a17968aa688a577860f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>accuracy</topic><topic>extrapolation</topic><topic>Ill-posed problem</topic><topic>iterated Lavrentiev method</topic><topic>iterated Tikhonov method</topic><topic>Lepskii principle</topic><topic>monotone error rule</topic><topic>qualification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hämarik, U.</creatorcontrib><creatorcontrib>Palm, R.</creatorcontrib><creatorcontrib>Raus, T.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of Inverse and Ill-posed Problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hämarik, U.</au><au>Palm, R.</au><au>Raus, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of extrapolation in regularization methods</atitle><jtitle>Journal of Inverse and Ill-posed Problems</jtitle><addtitle>Journal of Inverse and Ill-posed Problems</addtitle><date>2007-06-19</date><risdate>2007</risdate><volume>15</volume><issue>3</issue><spage>277</spage><epage>294</epage><pages>277-294</pages><issn>0928-0219</issn><eissn>1569-3953</eissn><eissn>1569-3945</eissn><abstract>Extrapolation is a well-known tool for increasing the accuracy of approximation methods. We consider extrapolation of Tikhonov and Lavrentiev methods and iterated variants of these methods for solving linear ill-posed problems in Hilbert space. For extrapolated approximation we take the linear combination of n ≥ 2 approximations of the original method with different parameters and with proper coefficients, guaranteeing for extrapolated method higher qualification than in original method. Extrapolated approximation can be used for approximation to solution of the equation or for construction of a posteriori rules for choice of the regularization parameter in original method. As shown, extrapolating n Tikhonov or Lavrentiev approximations gives the same approximation as one gets in nonstationary implicit iterative method after n iterations with the same parameters. If the solution is smooth and δ is noise level of data, a proper choice of n = n(δ) guarantees for extrapolated Tikhonov approximation accuracy versus accuracy of Tikhonov approximation. Note that in a posteriori parameter choice in Tikhonov method often several approximations with different parameters are computed and then computation of their linear combination is an easy task.</abstract><cop>Genthiner Strasse 13 10875 Berlin Germany</cop><pub>Walter de Gruyter</pub><doi>10.1515/jiip.2007.015</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0928-0219
ispartof Journal of Inverse and Ill-posed Problems, 2007-06, Vol.15 (3), p.277-294
issn 0928-0219
1569-3953
1569-3945
language eng
recordid cdi_crossref_primary_10_1515_jiip_2007_015
source De Gruyter journals
subjects accuracy
extrapolation
Ill-posed problem
iterated Lavrentiev method
iterated Tikhonov method
Lepskii principle
monotone error rule
qualification
title Use of extrapolation in regularization methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A50%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20extrapolation%20in%20regularization%20methods&rft.jtitle=Journal%20of%20Inverse%20and%20Ill-posed%20Problems&rft.au=H%C3%A4marik,%20U.&rft.date=2007-06-19&rft.volume=15&rft.issue=3&rft.spage=277&rft.epage=294&rft.pages=277-294&rft.issn=0928-0219&rft.eissn=1569-3953&rft_id=info:doi/10.1515/jiip.2007.015&rft_dat=%3Cistex_cross%3Eark_67375_QT4_9SZHN0B4_5%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true