Use of extrapolation in regularization methods
Extrapolation is a well-known tool for increasing the accuracy of approximation methods. We consider extrapolation of Tikhonov and Lavrentiev methods and iterated variants of these methods for solving linear ill-posed problems in Hilbert space. For extrapolated approximation we take the linear combi...
Gespeichert in:
Veröffentlicht in: | Journal of Inverse and Ill-posed Problems 2007-06, Vol.15 (3), p.277-294 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 294 |
---|---|
container_issue | 3 |
container_start_page | 277 |
container_title | Journal of Inverse and Ill-posed Problems |
container_volume | 15 |
creator | Hämarik, U. Palm, R. Raus, T. |
description | Extrapolation is a well-known tool for increasing the accuracy of approximation methods. We consider extrapolation of Tikhonov and Lavrentiev methods and iterated variants of these methods for solving linear ill-posed problems in Hilbert space. For extrapolated approximation we take the linear combination of n ≥ 2 approximations of the original method with different parameters and with proper coefficients, guaranteeing for extrapolated method higher qualification than in original method. Extrapolated approximation can be used for approximation to solution of the equation or for construction of a posteriori rules for choice of the regularization parameter in original method. As shown, extrapolating n Tikhonov or Lavrentiev approximations gives the same approximation as one gets in nonstationary implicit iterative method after n iterations with the same parameters. If the solution is smooth and δ is noise level of data, a proper choice of n = n(δ) guarantees for extrapolated Tikhonov approximation accuracy versus accuracy of Tikhonov approximation. Note that in a posteriori parameter choice in Tikhonov method often several approximations with different parameters are computed and then computation of their linear combination is an easy task. |
doi_str_mv | 10.1515/jiip.2007.015 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_jiip_2007_015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_QT4_9SZHN0B4_5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c190t-8d92e5f1a71a78cf68ce0db9fe5d048ab9e906d04c133a17968aa688a577860f3</originalsourceid><addsrcrecordid>eNpFj01Lw0AYhBdRMFaP3vMHEt93N_t11KJWKIrYXrws22RXt6ZN2Y1Q_fUmVBQGZhiGgYeQS4QSOfKrdQi7kgLIEpAfkQy50AXTnB2TDDRVBVDUp-QspTUASk5pRsplcnnnc7fvo911re1Dt83DNo_u7bO1MXwfmo3r37smnZMTb9vkLn59QpZ3t4vprJg_3T9Mr-dFjRr6QjWaOu7RykGq9kLVDpqV9o43UCm70k6DGGKNjFmUWihrhVKWS6kEeDYhxeG3jl1K0Xmzi2Fj45dBMCOsGWHNCGsG2P99SL3b_41t_DBCMsnN86Iy-uV19gg3leHsByPIVzI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Use of extrapolation in regularization methods</title><source>De Gruyter journals</source><creator>Hämarik, U. ; Palm, R. ; Raus, T.</creator><creatorcontrib>Hämarik, U. ; Palm, R. ; Raus, T.</creatorcontrib><description>Extrapolation is a well-known tool for increasing the accuracy of approximation methods. We consider extrapolation of Tikhonov and Lavrentiev methods and iterated variants of these methods for solving linear ill-posed problems in Hilbert space. For extrapolated approximation we take the linear combination of n ≥ 2 approximations of the original method with different parameters and with proper coefficients, guaranteeing for extrapolated method higher qualification than in original method. Extrapolated approximation can be used for approximation to solution of the equation or for construction of a posteriori rules for choice of the regularization parameter in original method. As shown, extrapolating n Tikhonov or Lavrentiev approximations gives the same approximation as one gets in nonstationary implicit iterative method after n iterations with the same parameters. If the solution is smooth and δ is noise level of data, a proper choice of n = n(δ) guarantees for extrapolated Tikhonov approximation accuracy versus accuracy of Tikhonov approximation. Note that in a posteriori parameter choice in Tikhonov method often several approximations with different parameters are computed and then computation of their linear combination is an easy task.</description><identifier>ISSN: 0928-0219</identifier><identifier>EISSN: 1569-3953</identifier><identifier>EISSN: 1569-3945</identifier><identifier>DOI: 10.1515/jiip.2007.015</identifier><language>eng</language><publisher>Genthiner Strasse 13 10875 Berlin Germany: Walter de Gruyter</publisher><subject>accuracy ; extrapolation ; Ill-posed problem ; iterated Lavrentiev method ; iterated Tikhonov method ; Lepskii principle ; monotone error rule ; qualification</subject><ispartof>Journal of Inverse and Ill-posed Problems, 2007-06, Vol.15 (3), p.277-294</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c190t-8d92e5f1a71a78cf68ce0db9fe5d048ab9e906d04c133a17968aa688a577860f3</citedby><cites>FETCH-LOGICAL-c190t-8d92e5f1a71a78cf68ce0db9fe5d048ab9e906d04c133a17968aa688a577860f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hämarik, U.</creatorcontrib><creatorcontrib>Palm, R.</creatorcontrib><creatorcontrib>Raus, T.</creatorcontrib><title>Use of extrapolation in regularization methods</title><title>Journal of Inverse and Ill-posed Problems</title><addtitle>Journal of Inverse and Ill-posed Problems</addtitle><description>Extrapolation is a well-known tool for increasing the accuracy of approximation methods. We consider extrapolation of Tikhonov and Lavrentiev methods and iterated variants of these methods for solving linear ill-posed problems in Hilbert space. For extrapolated approximation we take the linear combination of n ≥ 2 approximations of the original method with different parameters and with proper coefficients, guaranteeing for extrapolated method higher qualification than in original method. Extrapolated approximation can be used for approximation to solution of the equation or for construction of a posteriori rules for choice of the regularization parameter in original method. As shown, extrapolating n Tikhonov or Lavrentiev approximations gives the same approximation as one gets in nonstationary implicit iterative method after n iterations with the same parameters. If the solution is smooth and δ is noise level of data, a proper choice of n = n(δ) guarantees for extrapolated Tikhonov approximation accuracy versus accuracy of Tikhonov approximation. Note that in a posteriori parameter choice in Tikhonov method often several approximations with different parameters are computed and then computation of their linear combination is an easy task.</description><subject>accuracy</subject><subject>extrapolation</subject><subject>Ill-posed problem</subject><subject>iterated Lavrentiev method</subject><subject>iterated Tikhonov method</subject><subject>Lepskii principle</subject><subject>monotone error rule</subject><subject>qualification</subject><issn>0928-0219</issn><issn>1569-3953</issn><issn>1569-3945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpFj01Lw0AYhBdRMFaP3vMHEt93N_t11KJWKIrYXrws22RXt6ZN2Y1Q_fUmVBQGZhiGgYeQS4QSOfKrdQi7kgLIEpAfkQy50AXTnB2TDDRVBVDUp-QspTUASk5pRsplcnnnc7fvo911re1Dt83DNo_u7bO1MXwfmo3r37smnZMTb9vkLn59QpZ3t4vprJg_3T9Mr-dFjRr6QjWaOu7RykGq9kLVDpqV9o43UCm70k6DGGKNjFmUWihrhVKWS6kEeDYhxeG3jl1K0Xmzi2Fj45dBMCOsGWHNCGsG2P99SL3b_41t_DBCMsnN86Iy-uV19gg3leHsByPIVzI</recordid><startdate>20070619</startdate><enddate>20070619</enddate><creator>Hämarik, U.</creator><creator>Palm, R.</creator><creator>Raus, T.</creator><general>Walter de Gruyter</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070619</creationdate><title>Use of extrapolation in regularization methods</title><author>Hämarik, U. ; Palm, R. ; Raus, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c190t-8d92e5f1a71a78cf68ce0db9fe5d048ab9e906d04c133a17968aa688a577860f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>accuracy</topic><topic>extrapolation</topic><topic>Ill-posed problem</topic><topic>iterated Lavrentiev method</topic><topic>iterated Tikhonov method</topic><topic>Lepskii principle</topic><topic>monotone error rule</topic><topic>qualification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hämarik, U.</creatorcontrib><creatorcontrib>Palm, R.</creatorcontrib><creatorcontrib>Raus, T.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of Inverse and Ill-posed Problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hämarik, U.</au><au>Palm, R.</au><au>Raus, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of extrapolation in regularization methods</atitle><jtitle>Journal of Inverse and Ill-posed Problems</jtitle><addtitle>Journal of Inverse and Ill-posed Problems</addtitle><date>2007-06-19</date><risdate>2007</risdate><volume>15</volume><issue>3</issue><spage>277</spage><epage>294</epage><pages>277-294</pages><issn>0928-0219</issn><eissn>1569-3953</eissn><eissn>1569-3945</eissn><abstract>Extrapolation is a well-known tool for increasing the accuracy of approximation methods. We consider extrapolation of Tikhonov and Lavrentiev methods and iterated variants of these methods for solving linear ill-posed problems in Hilbert space. For extrapolated approximation we take the linear combination of n ≥ 2 approximations of the original method with different parameters and with proper coefficients, guaranteeing for extrapolated method higher qualification than in original method. Extrapolated approximation can be used for approximation to solution of the equation or for construction of a posteriori rules for choice of the regularization parameter in original method. As shown, extrapolating n Tikhonov or Lavrentiev approximations gives the same approximation as one gets in nonstationary implicit iterative method after n iterations with the same parameters. If the solution is smooth and δ is noise level of data, a proper choice of n = n(δ) guarantees for extrapolated Tikhonov approximation accuracy versus accuracy of Tikhonov approximation. Note that in a posteriori parameter choice in Tikhonov method often several approximations with different parameters are computed and then computation of their linear combination is an easy task.</abstract><cop>Genthiner Strasse 13 10875 Berlin Germany</cop><pub>Walter de Gruyter</pub><doi>10.1515/jiip.2007.015</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-0219 |
ispartof | Journal of Inverse and Ill-posed Problems, 2007-06, Vol.15 (3), p.277-294 |
issn | 0928-0219 1569-3953 1569-3945 |
language | eng |
recordid | cdi_crossref_primary_10_1515_jiip_2007_015 |
source | De Gruyter journals |
subjects | accuracy extrapolation Ill-posed problem iterated Lavrentiev method iterated Tikhonov method Lepskii principle monotone error rule qualification |
title | Use of extrapolation in regularization methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A50%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20extrapolation%20in%20regularization%20methods&rft.jtitle=Journal%20of%20Inverse%20and%20Ill-posed%20Problems&rft.au=H%C3%A4marik,%20U.&rft.date=2007-06-19&rft.volume=15&rft.issue=3&rft.spage=277&rft.epage=294&rft.pages=277-294&rft.issn=0928-0219&rft.eissn=1569-3953&rft_id=info:doi/10.1515/jiip.2007.015&rft_dat=%3Cistex_cross%3Eark_67375_QT4_9SZHN0B4_5%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |