On Congruent Numbers with Three Prime Factors

A method is given for constructing congruent numbers with three prime factors of the form 8 + 3. A family of such numbers is given for which the Mordell–Weil rank of their associated elliptic curves equals 2, the maximal rank and expected rank for a congruent number curve of this type.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integers (Berlin, Germany) Germany), 2011-10, Vol.11 (5), p.589-595
Hauptverfasser: Reinholz, Lindsey, Spearman, Blair K., Yang, Qiduan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 595
container_issue 5
container_start_page 589
container_title Integers (Berlin, Germany)
container_volume 11
creator Reinholz, Lindsey
Spearman, Blair K.
Yang, Qiduan
description A method is given for constructing congruent numbers with three prime factors of the form 8 + 3. A family of such numbers is given for which the Mordell–Weil rank of their associated elliptic curves equals 2, the maximal rank and expected rank for a congruent number curve of this type.
doi_str_mv 10.1515/integ.2011.043
format Article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_integ_2011_043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_integ_2011_043115589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1379-13e53a18d4bfa3f956a1968826e6a7bb386eb1066070e634fddbb678d038b6133</originalsourceid><addsrcrecordid>eNp1j7FOwzAURT2ARFW6MucHEt6L4xdHYkERBaSKMpTZspOXNlWbIDtR1b8npaxM9y7n6h4hHhASVKge227gbZICYgKZvBEz1JTHQCq9E4sQ9gCAKUpKYSbidReVfbf1I3dD9DEeHfsQndphF212njn69O2Ro6Wtht6He3Hb2EPgxV_OxdfyZVO-xav163v5vIorlHkRo2QlLeo6c42VTaHIYkFap8Rkc-ekJnYIRJADk8yaunaOcl2D1I5QyrlIrruV70Pw3Jjv6Yb1Z4NgLo7m19FcHM3kOAFPV-BkDwP7mieh81TMvh99N139B0RUShfyB_riWcU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Congruent Numbers with Three Prime Factors</title><source>EZB-FREE-00999 freely available EZB journals</source><source>De Gruyter journals</source><creator>Reinholz, Lindsey ; Spearman, Blair K. ; Yang, Qiduan</creator><creatorcontrib>Reinholz, Lindsey ; Spearman, Blair K. ; Yang, Qiduan</creatorcontrib><description>A method is given for constructing congruent numbers with three prime factors of the form 8 + 3. A family of such numbers is given for which the Mordell–Weil rank of their associated elliptic curves equals 2, the maximal rank and expected rank for a congruent number curve of this type.</description><identifier>ISSN: 1867-0652</identifier><identifier>DOI: 10.1515/integ.2011.043</identifier><language>eng</language><publisher>Walter de Gruyter GmbH &amp; Co. KG</publisher><subject>Congruent Numbers ; Elliptic Curve ; Rank</subject><ispartof>Integers (Berlin, Germany), 2011-10, Vol.11 (5), p.589-595</ispartof><rights>de Gruyter 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1379-13e53a18d4bfa3f956a1968826e6a7bb386eb1066070e634fddbb678d038b6133</citedby><cites>FETCH-LOGICAL-c1379-13e53a18d4bfa3f956a1968826e6a7bb386eb1066070e634fddbb678d038b6133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/integ.2011.043/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/integ.2011.043/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,66754,68538</link.rule.ids></links><search><creatorcontrib>Reinholz, Lindsey</creatorcontrib><creatorcontrib>Spearman, Blair K.</creatorcontrib><creatorcontrib>Yang, Qiduan</creatorcontrib><title>On Congruent Numbers with Three Prime Factors</title><title>Integers (Berlin, Germany)</title><description>A method is given for constructing congruent numbers with three prime factors of the form 8 + 3. A family of such numbers is given for which the Mordell–Weil rank of their associated elliptic curves equals 2, the maximal rank and expected rank for a congruent number curve of this type.</description><subject>Congruent Numbers</subject><subject>Elliptic Curve</subject><subject>Rank</subject><issn>1867-0652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1j7FOwzAURT2ARFW6MucHEt6L4xdHYkERBaSKMpTZspOXNlWbIDtR1b8npaxM9y7n6h4hHhASVKge227gbZICYgKZvBEz1JTHQCq9E4sQ9gCAKUpKYSbidReVfbf1I3dD9DEeHfsQndphF212njn69O2Ro6Wtht6He3Hb2EPgxV_OxdfyZVO-xav163v5vIorlHkRo2QlLeo6c42VTaHIYkFap8Rkc-ekJnYIRJADk8yaunaOcl2D1I5QyrlIrruV70Pw3Jjv6Yb1Z4NgLo7m19FcHM3kOAFPV-BkDwP7mieh81TMvh99N139B0RUShfyB_riWcU</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Reinholz, Lindsey</creator><creator>Spearman, Blair K.</creator><creator>Yang, Qiduan</creator><general>Walter de Gruyter GmbH &amp; Co. KG</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201110</creationdate><title>On Congruent Numbers with Three Prime Factors</title><author>Reinholz, Lindsey ; Spearman, Blair K. ; Yang, Qiduan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1379-13e53a18d4bfa3f956a1968826e6a7bb386eb1066070e634fddbb678d038b6133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Congruent Numbers</topic><topic>Elliptic Curve</topic><topic>Rank</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reinholz, Lindsey</creatorcontrib><creatorcontrib>Spearman, Blair K.</creatorcontrib><creatorcontrib>Yang, Qiduan</creatorcontrib><collection>CrossRef</collection><jtitle>Integers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reinholz, Lindsey</au><au>Spearman, Blair K.</au><au>Yang, Qiduan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Congruent Numbers with Three Prime Factors</atitle><jtitle>Integers (Berlin, Germany)</jtitle><date>2011-10</date><risdate>2011</risdate><volume>11</volume><issue>5</issue><spage>589</spage><epage>595</epage><pages>589-595</pages><issn>1867-0652</issn><abstract>A method is given for constructing congruent numbers with three prime factors of the form 8 + 3. A family of such numbers is given for which the Mordell–Weil rank of their associated elliptic curves equals 2, the maximal rank and expected rank for a congruent number curve of this type.</abstract><pub>Walter de Gruyter GmbH &amp; Co. KG</pub><doi>10.1515/integ.2011.043</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1867-0652
ispartof Integers (Berlin, Germany), 2011-10, Vol.11 (5), p.589-595
issn 1867-0652
language eng
recordid cdi_crossref_primary_10_1515_integ_2011_043
source EZB-FREE-00999 freely available EZB journals; De Gruyter journals
subjects Congruent Numbers
Elliptic Curve
Rank
title On Congruent Numbers with Three Prime Factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A35%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Congruent%20Numbers%20with%20Three%20Prime%20Factors&rft.jtitle=Integers%20(Berlin,%20Germany)&rft.au=Reinholz,%20Lindsey&rft.date=2011-10&rft.volume=11&rft.issue=5&rft.spage=589&rft.epage=595&rft.pages=589-595&rft.issn=1867-0652&rft_id=info:doi/10.1515/integ.2011.043&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_integ_2011_043115589%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true