Research on the Adaptive Control in Sugar Evaporative Crystallization Using LSSVM and SaDE-ELM

The process of sugar evaporative crystallization is a nonlinear process with large time lag and strong coupling. It is difficult to establish a reasonable mechanism model. In this paper, we use the data driving modeling method to establish an Adaptive Control model for batch boiling sugar crystalliz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of food engineering 2019-05, Vol.15 (5)
Hauptverfasser: Meng, Yanmei, Zhang, Jinlai, Qin, Johnny, Lan, Qiliang, Xie, Yanpeng, Hu, Feihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title International journal of food engineering
container_volume 15
creator Meng, Yanmei
Zhang, Jinlai
Qin, Johnny
Lan, Qiliang
Xie, Yanpeng
Hu, Feihong
description The process of sugar evaporative crystallization is a nonlinear process with large time lag and strong coupling. It is difficult to establish a reasonable mechanism model. In this paper, we use the data driving modeling method to establish an Adaptive Control model for batch boiling sugar crystallization process. First, by analyzing the main influencing factors of the evaporative crystallization process of intermittent boiling sugar, the most important two parameters, brix and liquid level, are selected as the control object. The self-adaptive differential evolution Extreme Learning Machine (SaDE-ELM) is used to construct the control model. A least squares support vector machine (LSSVM) is established and connected in the control loop to control the opening of the feed valve so that to control the feed flowrate according to the objective values of syrup Brix and liquid level. Experiments are conducted and the obtained data are used to train and verify the learning machines. Experiments indicate that the learning machines are able to realize adaptive control to key parameters of the crystallization process. Comparison of different neural networks indicates that the LSSVM performs better than BP, RBF and ELM and SaDE-ELM with prediction error of below 0.01, and training time of below 0.05 s.
doi_str_mv 10.1515/ijfe-2018-0203
format Article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_ijfe_2018_0203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_ijfe_2018_0203155_6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-6196e280d121a127bfea7c919060de1f8fa67f6a67a88b046e7a22d662b04ac53</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEmNw5Zw_kBGnS9KK0zTKh9QJiTKORF6bbp1KOyXd0Pj1pBpXLrZfWY9lPYTcAp-ABHlXbyvLBIeYccGjMzICKRWLtIzPyUhAMmVSq-klufJ-y7kUWusR-Xyz3qIrNrRrab-xdFbirq8Pls67tnddQ-uW5vs1OpoecNc5PC3d0ffYNPVPyIFc-rpd0yzPPxYU25Lm-JCyNFtck4sKG29v_vqYLB_T9_kzy16fXuazjBUigZ4pSJQVMS9BAILQq8qiLhJIuOKlhSquUOlKhYJxvOJTZTUKUSolQsBCRmMyOd0tXOe9s5XZufoL3dEAN4MdM9gxgx0z2AnA_Qn4xqa3rrRrtz-GwWy7vWvDq_-AwalR0S_p6mvi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Research on the Adaptive Control in Sugar Evaporative Crystallization Using LSSVM and SaDE-ELM</title><source>De Gruyter journals</source><creator>Meng, Yanmei ; Zhang, Jinlai ; Qin, Johnny ; Lan, Qiliang ; Xie, Yanpeng ; Hu, Feihong</creator><creatorcontrib>Meng, Yanmei ; Zhang, Jinlai ; Qin, Johnny ; Lan, Qiliang ; Xie, Yanpeng ; Hu, Feihong</creatorcontrib><description>The process of sugar evaporative crystallization is a nonlinear process with large time lag and strong coupling. It is difficult to establish a reasonable mechanism model. In this paper, we use the data driving modeling method to establish an Adaptive Control model for batch boiling sugar crystallization process. First, by analyzing the main influencing factors of the evaporative crystallization process of intermittent boiling sugar, the most important two parameters, brix and liquid level, are selected as the control object. The self-adaptive differential evolution Extreme Learning Machine (SaDE-ELM) is used to construct the control model. A least squares support vector machine (LSSVM) is established and connected in the control loop to control the opening of the feed valve so that to control the feed flowrate according to the objective values of syrup Brix and liquid level. Experiments are conducted and the obtained data are used to train and verify the learning machines. Experiments indicate that the learning machines are able to realize adaptive control to key parameters of the crystallization process. Comparison of different neural networks indicates that the LSSVM performs better than BP, RBF and ELM and SaDE-ELM with prediction error of below 0.01, and training time of below 0.05 s.</description><identifier>ISSN: 2194-5764</identifier><identifier>EISSN: 1556-3758</identifier><identifier>DOI: 10.1515/ijfe-2018-0203</identifier><language>eng</language><publisher>De Gruyter</publisher><subject>brix ; cane sugar crystallization ; Extreme Learning Machine ; LSSVM ; SaDE-ELM</subject><ispartof>International journal of food engineering, 2019-05, Vol.15 (5)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-6196e280d121a127bfea7c919060de1f8fa67f6a67a88b046e7a22d662b04ac53</citedby><cites>FETCH-LOGICAL-c291t-6196e280d121a127bfea7c919060de1f8fa67f6a67a88b046e7a22d662b04ac53</cites><orcidid>0000-0002-3457-1982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/ijfe-2018-0203/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/ijfe-2018-0203/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,66503,68287</link.rule.ids></links><search><creatorcontrib>Meng, Yanmei</creatorcontrib><creatorcontrib>Zhang, Jinlai</creatorcontrib><creatorcontrib>Qin, Johnny</creatorcontrib><creatorcontrib>Lan, Qiliang</creatorcontrib><creatorcontrib>Xie, Yanpeng</creatorcontrib><creatorcontrib>Hu, Feihong</creatorcontrib><title>Research on the Adaptive Control in Sugar Evaporative Crystallization Using LSSVM and SaDE-ELM</title><title>International journal of food engineering</title><description>The process of sugar evaporative crystallization is a nonlinear process with large time lag and strong coupling. It is difficult to establish a reasonable mechanism model. In this paper, we use the data driving modeling method to establish an Adaptive Control model for batch boiling sugar crystallization process. First, by analyzing the main influencing factors of the evaporative crystallization process of intermittent boiling sugar, the most important two parameters, brix and liquid level, are selected as the control object. The self-adaptive differential evolution Extreme Learning Machine (SaDE-ELM) is used to construct the control model. A least squares support vector machine (LSSVM) is established and connected in the control loop to control the opening of the feed valve so that to control the feed flowrate according to the objective values of syrup Brix and liquid level. Experiments are conducted and the obtained data are used to train and verify the learning machines. Experiments indicate that the learning machines are able to realize adaptive control to key parameters of the crystallization process. Comparison of different neural networks indicates that the LSSVM performs better than BP, RBF and ELM and SaDE-ELM with prediction error of below 0.01, and training time of below 0.05 s.</description><subject>brix</subject><subject>cane sugar crystallization</subject><subject>Extreme Learning Machine</subject><subject>LSSVM</subject><subject>SaDE-ELM</subject><issn>2194-5764</issn><issn>1556-3758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEmNw5Zw_kBGnS9KK0zTKh9QJiTKORF6bbp1KOyXd0Pj1pBpXLrZfWY9lPYTcAp-ABHlXbyvLBIeYccGjMzICKRWLtIzPyUhAMmVSq-klufJ-y7kUWusR-Xyz3qIrNrRrab-xdFbirq8Pls67tnddQ-uW5vs1OpoecNc5PC3d0ffYNPVPyIFc-rpd0yzPPxYU25Lm-JCyNFtck4sKG29v_vqYLB_T9_kzy16fXuazjBUigZ4pSJQVMS9BAILQq8qiLhJIuOKlhSquUOlKhYJxvOJTZTUKUSolQsBCRmMyOd0tXOe9s5XZufoL3dEAN4MdM9gxgx0z2AnA_Qn4xqa3rrRrtz-GwWy7vWvDq_-AwalR0S_p6mvi</recordid><startdate>20190527</startdate><enddate>20190527</enddate><creator>Meng, Yanmei</creator><creator>Zhang, Jinlai</creator><creator>Qin, Johnny</creator><creator>Lan, Qiliang</creator><creator>Xie, Yanpeng</creator><creator>Hu, Feihong</creator><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3457-1982</orcidid></search><sort><creationdate>20190527</creationdate><title>Research on the Adaptive Control in Sugar Evaporative Crystallization Using LSSVM and SaDE-ELM</title><author>Meng, Yanmei ; Zhang, Jinlai ; Qin, Johnny ; Lan, Qiliang ; Xie, Yanpeng ; Hu, Feihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-6196e280d121a127bfea7c919060de1f8fa67f6a67a88b046e7a22d662b04ac53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>brix</topic><topic>cane sugar crystallization</topic><topic>Extreme Learning Machine</topic><topic>LSSVM</topic><topic>SaDE-ELM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Yanmei</creatorcontrib><creatorcontrib>Zhang, Jinlai</creatorcontrib><creatorcontrib>Qin, Johnny</creatorcontrib><creatorcontrib>Lan, Qiliang</creatorcontrib><creatorcontrib>Xie, Yanpeng</creatorcontrib><creatorcontrib>Hu, Feihong</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of food engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Yanmei</au><au>Zhang, Jinlai</au><au>Qin, Johnny</au><au>Lan, Qiliang</au><au>Xie, Yanpeng</au><au>Hu, Feihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on the Adaptive Control in Sugar Evaporative Crystallization Using LSSVM and SaDE-ELM</atitle><jtitle>International journal of food engineering</jtitle><date>2019-05-27</date><risdate>2019</risdate><volume>15</volume><issue>5</issue><issn>2194-5764</issn><eissn>1556-3758</eissn><abstract>The process of sugar evaporative crystallization is a nonlinear process with large time lag and strong coupling. It is difficult to establish a reasonable mechanism model. In this paper, we use the data driving modeling method to establish an Adaptive Control model for batch boiling sugar crystallization process. First, by analyzing the main influencing factors of the evaporative crystallization process of intermittent boiling sugar, the most important two parameters, brix and liquid level, are selected as the control object. The self-adaptive differential evolution Extreme Learning Machine (SaDE-ELM) is used to construct the control model. A least squares support vector machine (LSSVM) is established and connected in the control loop to control the opening of the feed valve so that to control the feed flowrate according to the objective values of syrup Brix and liquid level. Experiments are conducted and the obtained data are used to train and verify the learning machines. Experiments indicate that the learning machines are able to realize adaptive control to key parameters of the crystallization process. Comparison of different neural networks indicates that the LSSVM performs better than BP, RBF and ELM and SaDE-ELM with prediction error of below 0.01, and training time of below 0.05 s.</abstract><pub>De Gruyter</pub><doi>10.1515/ijfe-2018-0203</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3457-1982</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2194-5764
ispartof International journal of food engineering, 2019-05, Vol.15 (5)
issn 2194-5764
1556-3758
language eng
recordid cdi_crossref_primary_10_1515_ijfe_2018_0203
source De Gruyter journals
subjects brix
cane sugar crystallization
Extreme Learning Machine
LSSVM
SaDE-ELM
title Research on the Adaptive Control in Sugar Evaporative Crystallization Using LSSVM and SaDE-ELM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T23%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20the%20Adaptive%20Control%20in%20Sugar%20Evaporative%20Crystallization%20Using%20LSSVM%20and%20SaDE-ELM&rft.jtitle=International%20journal%20of%20food%20engineering&rft.au=Meng,%20Yanmei&rft.date=2019-05-27&rft.volume=15&rft.issue=5&rft.issn=2194-5764&rft.eissn=1556-3758&rft_id=info:doi/10.1515/ijfe-2018-0203&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_ijfe_2018_0203155_6%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true